Innovation and the Growth of Business Firms A Stochastic Framework

[1]  David Argente,et al.  The Life Cycle of Products: Evidence and Implications , 2019, Journal of Political Economy.

[2]  Massimo Riccaboni,et al.  Where Gibrat meets Zipf: Scale and Scope of French Firms , 2017 .

[3]  John Van Reenen,et al.  The Fall of the Labor Share and the Rise of Superstar Firms , 2017, The Quarterly Journal of Economics.

[4]  John Van Reenen,et al.  Concentrating on the Fall of the Labor Share , 2017, SSRN Electronic Journal.

[5]  Giovanni Dosi,et al.  The Footprint of Evolutionary Processes of Learning and Selection Upon the Statistical Properties of Industrial Dynamics , 2016 .

[6]  Enghin Atalay How Important are Sectoral Shocks? , 2014 .

[7]  T. Mayer,et al.  Welfare and Trade Without Pareto , 2014 .

[8]  S. Solomon,et al.  Microeconomic structure determines macroeconomic dynamics: Aoki defeats the representative agent , 2014, 1401.7496.

[9]  Randal Douc,et al.  Nonlinear Time Series: Theory, Methods and Applications with R Examples , 2014 .

[10]  Massimo Riccaboni,et al.  The size distribution of US cities: Not Pareto, even in the tail , 2013 .

[11]  Costas Arkolakis,et al.  Exporters and Their Products: A Collection of Empirical Regularities , 2013 .

[12]  Luis Garicano,et al.  Firm Size Distortions and the Productivity Distribution: Evidence from France , 2013, SSRN Electronic Journal.

[13]  Misako Takayasu,et al.  Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems , 2013, 1301.2728.

[14]  S. Kotz,et al.  The Laplace Distribution and Generalizations , 2012 .

[15]  Erzo G. J. Luttmer Technology diffusion and growth , 2012, J. Econ. Theory.

[16]  M. Aoki,et al.  Non-self-averaging in macroeconomic models: a criticism of modern micro-founded macroeconomics , 2012 .

[17]  Vasco M. Carvalho,et al.  The Network Origins of Aggregate Fluctuations , 2011 .

[18]  M. Riccaboni,et al.  Pareto versus lognormal: a maximum entropy test. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  F. Pammolli,et al.  The productivity crisis in pharmaceutical R&D , 2011, Nature Reviews Drug Discovery.

[20]  Yannick Malevergne,et al.  Testing the Pareto against the lognormal distributions with the uniformly most powerful unbiased test applied to the distribution of cities. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  F. Lillo,et al.  Do Firms Share the Same Functional Form of Their Growth Rate Distribution? A Statistical Test , 2011, 1103.2234.

[22]  Costas Arkolakis,et al.  The Extensive Margin of Exporting Products: A Firm-Level Analysis , 2010, American Economic Journal: Macroeconomics.

[23]  M. Aoki,et al.  Non-Self-Averaging and the Statistical Mechanics of Endogenous Macroeconomic Fluctuations , 2010 .

[24]  Ufuk Akcigit,et al.  Growth through Heterogeneous Innovations , 2010, Journal of Political Economy.

[25]  Dan Cao,et al.  Innovation by Entrants and Incumbents , 2010, J. Econ. Theory.

[26]  Vasco M. Carvalho,et al.  The Great Diversification and its Undoing , 2010 .

[27]  Erzo G. J. Luttmer Models of Growth and Firm Heterogeneity , 2010 .

[28]  E. Scalas,et al.  Finitary probabilistic methods in econophysics , 2010 .

[29]  A. Levchenko,et al.  Power Laws in Firm Size and Openness to Trade: Measurement and Implications , 2010, SSRN Electronic Journal.

[30]  Andrew B. Bernard,et al.  Multiple-Product Firms and Product Switching , 2010 .

[31]  S. B. Lemeshko,et al.  Statistic Distribution Models for Some Nonparametric Goodness-of-Fit Tests in Testing Composite Hypotheses , 2010 .

[32]  Giovanni Dosi,et al.  The patterns of output growth of firms and countries: Scale invariances and scale specificities , 2009 .

[33]  Juan M. Sánchez,et al.  The U.S. Establishment-Size Distribution: Secular Changes and Sectoral Decomposition , 2009 .

[34]  R. Barro,et al.  On the Size Distribution of Macroeconomic Disasters , 2009 .

[35]  Xavier Gabaix,et al.  The Granular Origins of Aggregate Fluctuations , 2009 .

[36]  Sergey V. Buldyrev,et al.  The size variance relationship of business firm growth rates , 2008, Proceedings of the National Academy of Sciences.

[37]  X. Gabaix Power Laws in Economics and Finance , 2008 .

[38]  Erzo G. J. Luttmer On the Mechanics of Firm Growth , 2008 .

[39]  H. Stanley,et al.  On the Size Distribution of Business Firms , 2008 .

[40]  X. Gabaix,et al.  Rank − 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents , 2007 .

[41]  Erzo G. J. Luttmer Selection, Growth, and the Size Distribution of Firms , 2007 .

[42]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[43]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[44]  Sergey V. Buldyrev,et al.  THE GROWTH OF BUSINESS FIRMS: FACTS AND THEORY , 2007 .

[45]  F. Lotti,et al.  Defending Gibrat’s Law as a long-run regularity , 2007 .

[46]  S. Klepper,et al.  Submarkets and the evolution of market structure , 2006 .

[47]  Mark L. J. Wright,et al.  Establishment Size Dynamics in the Aggregate Economy , 2006 .

[48]  C. eckel,et al.  Multi-Product Firms and Flexible Manufacturing in the Global Economy , 2006 .

[49]  H. Stanley,et al.  A generalized preferential attachment model for business firms growth rates , 2006, physics/0609020.

[50]  A. Secchi,et al.  Explaining the distribution of firm growth rates , 2006 .

[51]  H. Stanley,et al.  Preferential Attachment and Growth Dynamics in Complex Systems , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  R. Axtell,et al.  Common Components in Firms' Growth and the Sectors Scaling Puzzle , 2006 .

[53]  H. Stanley,et al.  The growth of business firms: theoretical framework and empirical evidence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Miklós Koren,et al.  Technological Diversification , 2007, SSRN Electronic Journal.

[55]  Silvana Tenreyro,et al.  Volatility and Development , 2005 .

[56]  Nadia Jacoby,et al.  Corporate growth and industrial dynamics: evidence from French manufacturing , 2005 .

[57]  Rasmus Lentz,et al.  An Empirical Model of Growth Through Product Innovation , 2005, SSRN Electronic Journal.

[58]  Gerrit de Wit,et al.  An overview of steady-state distributions resulting from firm dynamics models , 2005 .

[59]  R. Perline Strong, Weak and False Inverse Power Laws , 2005 .

[60]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[61]  Massimo Riccaboni,et al.  Dynamic competition in pharmaceuticals , 2004, The European Journal of Health Economics, formerly: HEPAC.

[62]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[63]  Nikolay V. Dokholyan,et al.  Hierarchy in social organization , 2003 .

[64]  S. Kotz,et al.  Statistical Size Distributions in Economics and Actuarial Sciences , 2003 .

[65]  F. Pammolli,et al.  On Size and Growth of Business Firms , 2003, cond-mat/0307074.

[66]  Catherine Matraves,et al.  Market Structure, R&D and Advertising in the Pharmaceutical Industry , 2003 .

[67]  W. Reed,et al.  From gene families and genera to incomes and internet file sizes: why power laws are so common in nature. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  J. Bouchaud,et al.  Statistical Models for Company Growth , 2002, cond-mat/0210479.

[69]  S. Winter,et al.  Evolutionary theorizing in economics , 2002 .

[70]  W. Reed The Pareto, Zipf and other power laws , 2001 .

[71]  F. Lotti,et al.  Is firm growth proportional? An appraisal of firm size distribution , 2001 .

[72]  Luís M. B. Cabral,et al.  On the Evolution of the Firm Size Distribution: Facts and Theory , 2001 .

[73]  R. Axtell Zipf Distribution of U.S. Firm Sizes , 2001, Science.

[74]  John Sutton,et al.  The Variance of Firm Growth Rates: The Scaling Puzzle , 2001 .

[75]  Massimo Riccaboni,et al.  Innovation and corporate growth in the evolution of the drug industry , 2001 .

[76]  S. Solomon,et al.  Power laws of wealth, market order volumes and market returns , 2001, cond-mat/0102423.

[77]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .

[78]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[79]  Rebecca Henderson,et al.  Sources of Industrial Leadership: The Pharmaceutical Industry and the Revolution in Molecular Biology: Interactions Among Scientific, Institutional, and Organizational Change , 1999 .

[80]  Steven N. Durlauf,et al.  A formal model of theory choice in science , 1999 .

[81]  William A. Brock,et al.  Scaling in Economics: A Reader's Guide , 1999 .

[82]  X. Gabaix Zipf's Law for Cities: An Explanation , 1999 .

[83]  Pedro Puig,et al.  The Best Test of Exponentiality against Singly Truncated Normal Alternatives , 1999 .

[84]  David Lando,et al.  On cox processes and credit risky securities , 1998 .

[85]  H. Eugene Stanley,et al.  Universal features in the growth dynamics of complex organizations , 1998, cond-mat/9804100.

[86]  Nikolay V. Dokholyan,et al.  Distribution of Base Pair Repeats in Coding and Noncoding DNA Sequences , 1997 .

[87]  L. Amaral,et al.  Power law scaling for a system of interacting units with complex internal structure , 1997, cond-mat/9707342.

[88]  Sergey V. Buldyrev,et al.  Scaling behavior in economics: II. Modeling of company growth , 1997, cond-mat/9702085.

[89]  Sergey V. Buldyrev,et al.  Scaling behavior in economics: I Epirical results for company growth , 1997, cond-mat/9702082.

[90]  Arthur De Vany,et al.  Bose-Einstein Dynamics and Adaptive Contracting in the Motion Picture Industry , 1996 .

[91]  J. Sutton Gibrat's Legacy , 1996 .

[92]  D. Sornette,et al.  Convergent Multiplicative Processes Repelled from Zero: Power Laws and Truncated Power Laws , 1996, cond-mat/9609074.

[93]  Nicholas Oulton,et al.  Growth and Size of Firms , 1996 .

[94]  R. Barro Determinants of Economic Growth: A Cross-Country Empirical Study , 1996 .

[95]  L. Amaral,et al.  Scaling behaviour in the growth of companies , 1996, Nature.

[96]  Danny Quah,et al.  Twin peaks : growth and convergence in models of distribution dynamics , 1996 .

[97]  R. Mantegna,et al.  Zipf plots and the size distribution of firms , 1995 .

[98]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[99]  R. Radner The organization of decentralized information processing , 1993 .

[100]  P. David Knowledge, Property, and the System Dynamics of Technological Change , 1992 .

[101]  M. Arellano,et al.  Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations , 1991 .

[102]  Larry Samuelson,et al.  The Growth and Failure of U. S. Manufacturing Plants , 1989 .

[103]  M. West On scale mixtures of normal distributions , 1987 .

[104]  David S. Evans Tests of Alternative Theories of Firm Growth , 1987, Journal of Political Economy.

[105]  David S. Evans The Relationship between Firm Growth, Size, and Age: Estimates for 100 Manufacturing Industries. , 1987 .

[106]  Bronwyn H Hall,et al.  The Relationship between Firm Size and Firm Growth in the U.S. Manufacturing Sector , 1986 .

[107]  Jonathan S. Leonard On the Size Distribution of Employment and Establishments , 1986 .

[108]  Yosihiko Ogata,et al.  Inference for earthquake models: A self-correcting model , 1984 .

[109]  Sidney G. Winter,et al.  Schumpeterian Competition in Alternative Technological Regimes , 1983 .

[110]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[111]  E. Montroll,et al.  On 1/f noise and other distributions with long tails. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[112]  David J. Teece,et al.  Towards an economic theory of the multiproduct firm , 1982 .

[113]  G. Shedler,et al.  Simulation of Nonhomogeneous Poisson Processes by Thinning , 1979 .

[114]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[115]  H A Simon,et al.  Some distributions associated with bose-einstein statistics. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[116]  J. Durbin Kolmogorov-Smirnov tests when parameters are estimated with applications to tests of exponentiality and tests on spacings , 1975 .

[117]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[118]  A. Hawkes Spectra of some self-exciting and mutually exciting point processes , 1971 .

[119]  H. Lilliefors On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown , 1969 .

[120]  C. C. Heyde,et al.  On a Property of the Lognormal Distribution , 1963 .

[121]  Peter Pashigian,et al.  Firm Size and Rate of Growth , 1962, Journal of Political Economy.

[122]  L. Fenton The Sum of Log-Normal Probability Distributions in Scatter Transmission Systems , 1960 .

[123]  R. Nelson The Simple Economics of Basic Scientific Research , 1959, Journal of Political Economy.

[124]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[125]  J. Kiefer,et al.  On Tests of Normality and Other Tests of Goodness of Fit Based on Distance Methods , 1955 .

[126]  J. H. Darwin POPULATION DIFFERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE BIRTH AND DEATH PROCESSES , 1953 .

[127]  D. Champernowne A Model of Income Distribution , 1953 .

[128]  D. Kendall,et al.  On some modes of population growth leading to R. A. Fisher's logarithmic series distribution. , 1948, Biometrika.

[129]  M. Kalecki,et al.  On the Gibrat Distribution , 1945 .

[130]  J. Wishart Tables for Statisticians , 1939, Nature.

[131]  Didier Sornette,et al.  Shocks, Crashes and Bubbles in Financial Markets , 2010 .

[132]  Alex Coad,et al.  The Growth of Firms , 2009 .

[133]  Herbert A. Simon,et al.  Organizations and Markets , 2009 .

[134]  R. Axtell,et al.  Volatility and Asymmetry of Small Firm Growth Rates Over Increasing Time Frames , 2006 .

[135]  G. Parisi Brownian motion , 2005, Nature.

[136]  Joel Mokyr,et al.  Long-Term Economic Growth and the History of Technology , 2005 .

[137]  L. Orsenigo,et al.  The intensity of competition after patent expiry in pharmaceuticals. A cross-country analysis , 2002 .

[138]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[139]  Steven N. Durlauf,et al.  Chapter 4 The new empirics of economic growth , 1999 .

[140]  R. Caves Industrial Organization and New Findings on the Turnover and Mobility of Firms , 1998 .

[141]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[142]  S. Klepper Entry, Exit, Growth, and Innovation over the Product Life Cycle , 1996 .

[143]  A. Pakes,et al.  Markov-Perfect Industry Dynamics: A Framework for Empirical Work , 1995 .

[144]  S. Winter,et al.  Understanding corporate coherence: Theory and evidence , 1994 .

[145]  Angelo M. Petroni,et al.  Conventionalism, scientific discovery and the sociology of knowledge* , 1993 .

[146]  A. M. Petroni Why have a heuristic of scientific discovery , 1992 .

[147]  M. Friedman Do Old Fallacies Ever Die , 1992 .

[148]  G. Dosi Sources, Procedures, and Microeconomic Effects of Innovation , 1988 .

[149]  E. Montroll On the dynamics and evolution of some sociotechnical systems , 1987 .

[150]  P. Brémaud Point Processes and Queues , 1981 .

[151]  Boyan Jovanovic Selection and the evolution of industry , 1981 .

[152]  Robert E. Lucas,et al.  On the Size Distribution of Business Firms , 1978 .

[153]  G. Whittington,et al.  The Size and Growth of Firms , 1975 .

[154]  M. Stephens Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics without Extensive Tables , 1970 .

[155]  Edwin Mansfield,et al.  ENTRY, GIBRAT'S LAW, INNOVATION, AND THE GROWTH OF FIRMS , 1962 .

[156]  M. Kendall Theoretical Statistics , 1956, Nature.

[157]  G. Yule,et al.  A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .