Protonation drives the conformational switch in the multidrug transporter LmrP.

Multidrug antiporters of the major facilitator superfamily couple proton translocation to the extrusion of cytotoxic molecules. The conformational changes that underlie the transport cycle and the structural basis of coupling of these transporters have not been elucidated. Here we used extensive double electron-electron resonance measurements to uncover the conformational equilibrium of LmrP, a multidrug transporter from Lactococcus lactis, and to investigate how protons and ligands shift this equilibrium to enable transport. We find that the transporter switches between outward-open and outward-closed conformations, depending on the protonation states of specific acidic residues forming a transmembrane protonation relay. Our data can be framed in a model of transport wherein substrate binding initiates the transport cycle by opening the extracellular side. Subsequent protonation of membrane-embedded acidic residues induces substrate release to the extracellular side and triggers a cascade of conformational changes that concludes in proton release to the intracellular side.

[1]  A. Yamaguchi,et al.  Metal-tetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. The role of a conserved sequence motif, GXXXXRXGRR, in a putative cytoplasmic loop between helices 2 and 3. , 1992, The Journal of biological chemistry.

[2]  Xinqi Gong,et al.  Crystal structure of a bacterial homologue of glucose transporters GLUT1–4 , 2012, Nature.

[3]  H. Zimmermann,et al.  DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data , 2006 .

[4]  J. Whitelegge,et al.  Dissection of mechanistic principles of a secondary multidrug efflux protein. , 2012, Molecular cell.

[5]  H. Gong,et al.  Structure of a fucose transporter in an outward-open conformation , 2010, Nature.

[6]  E. Tajkhorshid,et al.  Simulation of spontaneous substrate binding revealing the binding pathway and mechanism and initial conformational response of GlpT. , 2010, Biochemistry.

[7]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[8]  A. Driessen,et al.  Energetics of wild-type and mutant multidrug resistance secondary transporter LmrP of Lactococcus lactis. , 2004, Biochimica et biophysica acta.

[9]  M. G. Madej,et al.  Helix dynamics in LacY: helices II and IV. , 2010, Journal of molecular biology.

[10]  J. Symerský,et al.  Structures of a Na+-coupled, substrate-bound MATE multidrug transporter , 2013, Proceedings of the National Academy of Sciences.

[11]  A. Driessen,et al.  Multidrug resistance in Lactococcus lactis: evidence for ATP‐dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. , 1996, The EMBO journal.

[12]  M. J. Lemieux,et al.  The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. , 2004, Current opinion in structural biology.

[13]  M. Sansom,et al.  Conformational change in an MFS protein: MD simulations of LacY. , 2007, Structure.

[14]  S. Iwata,et al.  Structural determination of wild-type lactose permease , 2007, Proceedings of the National Academy of Sciences.

[15]  H. Kaback,et al.  The Alternating Access Transport Mechanism in LacY , 2010, The Journal of Membrane Biology.

[16]  A. Shatkin,et al.  Site-directed mutants of Escherichia coli alpha-ketoglutarate permease (KgtP). , 1992, Biochemistry.

[17]  S. Subramaniam,et al.  Structure and transport mechanism of the bacterial oxalate transporter OxlT. , 2004, Biophysical journal.

[18]  Da-Neng Wang,et al.  Structure and Mechanism of the Glycerol-3-Phosphate Transporter from Escherichia coli , 2003, Science.

[19]  Hiroshi Nikaido,et al.  Efflux-Mediated Drug Resistance in Bacteria , 2012, Drugs.

[20]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[21]  C. Tanford Mechanism of free energy coupling in active transport. , 1983, Annual review of biochemistry.

[22]  H. Yoneyama,et al.  Use of Fluorescence Probes to Monitor Function of the Subunit Proteins of the MexA-MexB-OprM Drug Extrusion Machinery inPseudomonas aeruginosa * , 1997, The Journal of Biological Chemistry.

[23]  B. Poolman,et al.  Restrictive use of detergents in the functional reconstitution of the secondary multidrug transporter LmrP. , 1999, Biochemistry.

[24]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[25]  Joseph L. Baker,et al.  Simulations of substrate transport in the multidrug transporter EmrD , 2012, Proteins.

[26]  S. Schuldiner,et al.  Direct Evidence for Substrate-induced Proton Release in Detergent-solubilized EmrE, a Multidrug Transporter* , 2004, Journal of Biological Chemistry.

[27]  A. Driessen,et al.  Proton motive force mediates a reorientation of the cytosolic domains of the multidrug transporter LmrP , 2004, Cellular and Molecular Life Sciences CMLS.

[28]  V. Ling,et al.  Extraction of Hoechst 33342 from the cytoplasmic leaflet of the plasma membrane by P-glycoprotein. , 1997, European journal of biochemistry.

[29]  Gunnar Jeschke,et al.  Distance measurements in the nanometer range by pulse EPR. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  I. Paulsen,et al.  Bioenergetics of the Staphylococcal Multidrug Export Protein QacA , 1999, The Journal of Biological Chemistry.

[31]  Gunnar Jeschke,et al.  DEER distance measurements on proteins. , 2012, Annual review of physical chemistry.

[32]  Klaus Schulten,et al.  Sugar binding and protein conformational changes in lactose permease. , 2006, Biophysical journal.

[33]  A. Yamaguchi,et al.  Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon Tn10. Histidine 257 plays an essential role in H+ translocation. , 1991, The Journal of biological chemistry.

[34]  J. Ruysschaert,et al.  Interactions between Phosphatidylethanolamine Headgroup and LmrP, a Multidrug Transporter , 2008, Journal of Biological Chemistry.

[35]  H. Kaback,et al.  Binding affinity of lactose permease is not altered by the H+ electrochemical gradient. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  O. Jardetzky,et al.  Simple Allosteric Model for Membrane Pumps , 1966, Nature.

[37]  H. Kaback,et al.  The role of helix VIII in the lactose permease of Escherichia coli: II. Site‐directed sulfhydryl modification , 1997, Protein science : a publication of the Protein Society.

[38]  W. Konings,et al.  Acidic Residues in the Lactococcal Multidrug Efflux Pump LmrP Play Critical Roles in Transport of Lipophilic Cationic Compounds* , 2002, The Journal of Biological Chemistry.

[39]  L. Forrest,et al.  The structural basis of secondary active transport mechanisms. , 2011, Biochimica et biophysica acta.

[40]  A. Driessen,et al.  Facilitated Drug Influx by an Energy-uncoupled Secondary Multidrug Transporter* , 2004, Journal of Biological Chemistry.

[41]  J. Ruysschaert,et al.  Conformational changes in a bacterial multidrug transporter are phosphatidylethanolamine-dependent , 2007, Cellular and Molecular Life Sciences.

[42]  M. Putman,et al.  The secondary multidrug transporter LmrP contains multiple drug interaction sites. , 1999, Biochemistry.

[43]  A. Driessen,et al.  Energetics and Mechanism of Drug Transport Mediated by the Lactococcal Multidrug Transporter LmrP* , 1996, The Journal of Biological Chemistry.

[44]  M. Saier,et al.  The major facilitator superfamily (MFS) revisited , 2012, The FEBS journal.

[45]  A. Driessen,et al.  The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  H. Mchaourab,et al.  Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. , 2011, Structure.

[47]  C. Altenbach,et al.  Sugar binding induces an outward facing conformation of LacY , 2007, Proceedings of the National Academy of Sciences.

[48]  M. Putman,et al.  The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. , 2001, Microbiology.

[49]  M. G. Madej,et al.  Apo-intermediate in the transport cycle of lactose permease (LacY) , 2012, Proceedings of the National Academy of Sciences.

[50]  H. V. van Veen,et al.  A flexible cation binding site in the multidrug major facilitator superfamily transporter LmrP is associated with variable proton coupling , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[51]  N. Pazdernik,et al.  Roles of Charged Residues in the Conserved Motif, G-X-X-X-D/E-R/K-X-G-[X]-R/K-R/K, of the Lactose Permease of Escherichia coli , 2000, The Journal of Membrane Biology.

[52]  M. G. Madej,et al.  An Early Event in the Transport Mechanism of LacY Protein , 2011, The Journal of Biological Chemistry.

[53]  G. Chang,et al.  Structure of the Multidrug Transporter EmrD from Escherichia coli , 2006, Science.

[54]  Yun-Wei Chiang,et al.  The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. , 2005, Journal of magnetic resonance.

[55]  Ursula Kummer,et al.  The metabolic pH response in Lactococcus lactis: An integrative experimental and modelling approach , 2009, Comput. Biol. Chem..

[56]  S. Baldwin,et al.  Crystal structure of a prokaryotic homologue of the mammalian oligopeptide–proton symporters, PepT1 and PepT2 , 2011, The EMBO journal.

[57]  H. Kaback,et al.  Role of protons in sugar binding to LacY , 2012, Proceedings of the National Academy of Sciences.