Bounds on the Number of Mass Points of the Capacity Achieving Distribution of the Amplitude Constraint Poisson Noise Channel

This work considers a Poisson noise channel with an amplitude constraint. It is well-known that the capacity-achieving input distribution for this channel is discrete with finitely many points. We sharpen this result by introducing upper and lower bounds on the number of mass points. In particular, the upper bound of order A log(A) and lower bound of order √ A are established where A is the constraint on the input amplitude. In addition, along the way, we show several other properties of the capacity and capacity-achieving distribution. For example, it is shown that the capacity is equal to − logPY ⋆(0) where PY ⋆ is the optimal output distribution. Moreover, an upper bound on the values of the probability masses of the capacity-achieving distribution and a lower bound on the probability of the largest mass point are established.

[1]  Robert J. McEliece,et al.  The practical limits of photon communication , 1979 .

[2]  Murat Uysal,et al.  Survey on Free Space Optical Communication: A Communication Theory Perspective , 2014, IEEE Communications Surveys & Tutorials.

[3]  T. Apostol Introduction to analytic number theory , 1976 .

[4]  Mahdi Cheraghchi,et al.  Improved Capacity Upper Bounds for the Discrete-Time Poisson Channel , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[5]  Shlomo Shamai,et al.  Mutual Information and Conditional Mean Estimation in Poisson Channels , 2004, IEEE Transactions on Information Theory.

[6]  Shai Ben-David,et al.  Understanding Machine Learning: From Theory to Algorithms , 2014 .

[7]  Gregory W. Wornell,et al.  Refined analysis of the Poisson channel in the high-photon-efficiency regime , 2012, 2012 IEEE Information Theory Workshop.

[8]  J. Gordon,et al.  Quantum Effects in Communications Systems , 1962, Proceedings of the IRE.

[9]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[10]  Miguel Á. Carreira-Perpiñán,et al.  Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application , 2013, ArXiv.

[11]  S. Verdú Poisson Communication Theory , 2004 .

[12]  H. Vincent Poor,et al.  The Capacity Achieving Distribution for the Amplitude Constrained Additive Gaussian Channel: An Upper Bound on the Number of Mass Points , 2019, IEEE Transactions on Information Theory.

[13]  Tsachy Weissman,et al.  Mutual information, relative entropy, and estimation in the Poisson channel , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[14]  S. Shamai,et al.  Capacity of a pulse amplitude modulated direct detection photon channel , 1990 .

[15]  Maxim Raginsky,et al.  Strong Data Processing Inequalities and $\Phi $ -Sobolev Inequalities for Discrete Channels , 2014, IEEE Transactions on Information Theory.

[16]  Alex Dytso,et al.  Estimation in Poisson Noise: Properties of the Conditional Mean Estimator , 2020, IEEE Transactions on Information Theory.

[17]  Shlomo Shamai,et al.  When are discrete channel inputs optimal? — Optimization techniques and some new results , 2018, 2018 52nd Annual Conference on Information Sciences and Systems (CISS).

[18]  Samuel Karlin,et al.  Polya Type Distributions, II , 1957 .

[19]  Alfonso Martinez,et al.  Spectral efficiency of optical direct detection , 2007 .

[20]  Sergio Verdú,et al.  Arimoto–Rényi Conditional Entropy and Bayesian $M$ -Ary Hypothesis Testing , 2017, IEEE Transactions on Information Theory.

[21]  Yihong Wu,et al.  Strong data-processing inequalities for channels and Bayesian networks , 2015, 1508.06025.

[22]  Richard D. Wesel,et al.  Capacity of the binomial channel, or minimax redundancy for memoryless sources , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[23]  Jeffrey H. Shapiro,et al.  The Discrete-Time Poisson Channel at Low Input Powers , 2011, IEEE Transactions on Information Theory.

[24]  Alfonso Martinez,et al.  Achievability of the Rate ${1/2}\log(1+\es)$ in the Discrete-Time Poisson Channel , 2008, ArXiv.

[25]  John R. Pierce,et al.  The capacity of the photon counting channel , 1981, IEEE Trans. Inf. Theory.

[26]  Simone Wannemaker,et al.  Comparisons Of Stochastic Matrices With Applications In Information Theory Statistics Economics And Population Sciences , 2016 .

[27]  Chein-I Chang,et al.  On calculating the capacity of an infinite-input finite (infinite)-output channel , 1988, IEEE Trans. Inf. Theory.

[28]  Alberto Lekuona,et al.  Sharp estimates in signed Poisson approximation of Poisson mixtures , 2005 .

[29]  Jun Chen,et al.  Capacity-Achieving Distributions for the Discrete-Time Poisson Channel—Part II: Binary Inputs , 2014, IEEE Transactions on Communications.

[30]  Amos Lapidoth,et al.  On the Capacity of the Discrete-Time Poisson Channel , 2009, IEEE Transactions on Information Theory.

[31]  Joel G. Smith,et al.  The Information Capacity of Amplitude- and Variance-Constrained Scalar Gaussian Channels , 1971, Inf. Control..

[32]  Richard D. Wesel,et al.  Capacities and Optimal Input Distributions for Particle-Intensity Channels , 2020, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[33]  Libuse Baladová Minimum of average conditional entropy for given minimum probability of error , 1966, Kybernetika.

[34]  Gregory W. Wornell,et al.  The impact of dark current on the wideband Poisson channel , 2014, 2014 IEEE International Symposium on Information Theory.

[35]  J. Borwein,et al.  Uniform Bounds for the Complementary Incomplete Gamma Function , 2009 .

[36]  Yihong Wu,et al.  Strong Data Processing Inequalities for Input Constrained Additive Noise Channels , 2015, IEEE Transactions on Information Theory.

[37]  Mahdi Cheraghchi,et al.  Non-Asymptotic Capacity Upper Bounds for the Discrete-Time Poisson Channel with Positive Dark Current , 2020, ArXiv.

[38]  Sean P. Meyn,et al.  Characterization and computation of optimal distributions for channel coding , 2005, IEEE Transactions on Information Theory.

[39]  Jun Chen,et al.  Capacity-Achieving Distributions for the Discrete-Time Poisson Channel—Part I: General Properties and Numerical Techniques , 2014, IEEE Transactions on Communications.

[40]  Hans S. Witsenhausen Some aspects of convexity useful in information theory , 1980, IEEE Trans. Inf. Theory.