Single-Photon Nanoantennas

Single-photon nanoantennas are broadband strongly scattering nanostructures placed in the near field of a single quantum emitter, with the goal to enhance the coupling between the emitter and far-field radiation channels. Recently, great strides have been made in the use of nanoantennas to realize fluorescence brightness enhancements, and Purcell enhancements, of several orders of magnitude. This perspective reviews the key figures of merit by which single-photon nanoantenna performance is quantified and the recent advances in measuring these metrics unambiguously. Next, this perspective discusses what the state of the art is in terms of fluoresent brightness enhancements, Purcell factors, and directivity control on the level of single photons. Finally, I discuss future challenges for single-photon nanoantennas.

[1]  Carl E. Baum,et al.  On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems , 1971 .

[2]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[3]  G. Rikken Enhancement and inhibition of spontaneous emission , 1995 .

[4]  Rudolf Sprik,et al.  Optical emission in periodic dielectrics , 1996 .

[5]  V. Sandoghdar,et al.  Optical microscopy using a single-molecule light source , 2000, Nature.

[6]  D. Pohl Near Field Optics Seen as an Antenna Problem , 2000 .

[7]  M. Garcia-Parajo,et al.  Influencing the angular emission of a single molecule. , 2000, Physical review letters.

[8]  A. Lagendijk,et al.  UvA-DARE ( Digital Academic Repository ) Broadband Fivefold reduction of vacuum fluctuations probed by dyes in photonic crystals , 2017 .

[9]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[10]  A. Kolomenskiǐ,et al.  Effect of varying electric potential on surface-plasmon resonance sensing. , 2004, Applied optics.

[11]  Lukas Novotny,et al.  Single-molecule orientations determined by direct emission pattern imaging , 2004 .

[12]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[13]  B C Buchler,et al.  Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. , 2005, Physical review letters.

[14]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[15]  Hideki T. Miyazaki,et al.  Controlled plasmon resonance in closed metal/insulator/metal nanocavities , 2006 .

[16]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[17]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[18]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[19]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[20]  Alessandro Salandrino,et al.  Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain , 2007 .

[21]  R. Soref,et al.  Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit , 2007 .

[22]  A. Polman,et al.  Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model , 2007 .

[23]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[24]  Holger F. Hofmann,et al.  Design parameters for a nano-optical Yagi–Uda antenna , 2007, cond-mat/0703595.

[25]  B. Hecht,et al.  Near-field optics seen as an antenna problem , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[26]  M. V. D. van de Corput,et al.  Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level. , 2007, Nano letters.

[27]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[28]  R. A. Smith,et al.  Single Photon Sources , 2008 .

[29]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[30]  T. Shahbazyan,et al.  Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect. , 2008, Physical review letters.

[31]  W. Vos,et al.  Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment , 2009, 0902.1862.

[32]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[33]  A. Koenderink Plasmon nanoparticle array waveguides for single photon and single plasmon sources. , 2009, Nano letters.

[34]  J. Enderlein,et al.  Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity. , 2009, Physical review letters.

[35]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[36]  Oliver Benson,et al.  Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. , 2010, Nano letters.

[37]  J. Greffet,et al.  Optical patch antennas for single photon emission using surface plasmon resonances. , 2010, Physical review letters.

[38]  Peter Lodahl,et al.  Strongly modified plasmon-matter interaction with mesoscopic quantum emitters , 2010, 1011.5669.

[39]  A. Koenderink On the use of Purcell factors for plasmon antennas. , 2010, Optics letters.

[40]  Jean-Jacques Greffet,et al.  Impedance of a nanoantenna and a single quantum emitter. , 2010, Physical review letters.

[41]  V. Sandoghdar,et al.  Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature. , 2010, Optics express.

[42]  Yoshihisa Yamamoto,et al.  Single-photon Devices and Applications , 2010 .

[43]  L. Novotný,et al.  Antennas for light , 2011 .

[44]  T. Ebbesen,et al.  Plasmonic antennas for directional sorting of fluorescence emission. , 2011, Nano letters.

[45]  M. Frimmer,et al.  Scanning emitter lifetime imaging microscopy for spontaneous emission control. , 2011, Physical review letters.

[46]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[47]  A. Polman,et al.  Angle-resolved cathodoluminescence spectroscopy , 2011, 1107.3632.

[48]  A. Polman,et al.  Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy , 2014 .

[49]  A. Femius Koenderink,et al.  Fourier microscopy of single plasmonic scatterers , 2011, 1105.3077.

[50]  Nicolas Bonod,et al.  Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA , 2012, Nature Communications.

[51]  V. Subramaniam,et al.  Silver Nanoparticle Aggregates as Highly Efficient Plasmonic Antennas for Fluorescence Enhancement , 2012 .

[52]  R. Frontiera,et al.  SERS: Materials, applications, and the future , 2012 .

[53]  R. Baer,et al.  Near-field manipulation of spectroscopic selection rules on the nanoscale , 2012, Proceedings of the National Academy of Sciences.

[54]  M. Orrit,et al.  Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. , 2012, Nature nanotechnology.

[55]  Frank Vollmer,et al.  Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity. , 2012, Journal of biophotonics.

[56]  Nicolas Bonod,et al.  Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. , 2012, Optics express.

[57]  Zubin Jacob,et al.  Broadband Purcell effect: Radiative decay engineering with metamaterials , 2009, 0910.3981.

[58]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[59]  Bert Hecht,et al.  Electrically connected resonant optical antennas. , 2012, Nano letters.

[60]  V. Sandoghdar,et al.  Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission. , 2012, Physical review letters.

[61]  Wei Zhou,et al.  Plasmonic bowtie nanolaser arrays. , 2012, Nano letters.

[62]  T. Ebbesen,et al.  Saturated excitation of fluorescence to quantify excitation enhancement in aperture antennas. , 2012, Optics express.

[63]  R. Zia,et al.  Direct modulation of lanthanide emission at sub-lifetime scales. , 2012, Nano letters.

[64]  Lukas Novotny,et al.  Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center. , 2013, Nano letters.

[65]  F. B. Arango,et al.  Plasmonic antennas hybridized with dielectric waveguides , 2012, CLEO: 2013.

[66]  P. Senellart,et al.  Controlling spontaneous emission with plasmonic optical patch antennas. , 2012, Nano letters (Print).

[67]  R. Carminati,et al.  Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe. , 2013, Optics express.

[68]  B. Shapiro,et al.  Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot , 2013, Nature Communications.

[69]  R. Fleury,et al.  Enhanced superradiance in epsilon-near-zero plasmonic channels , 2013, 1303.3510.

[70]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[71]  Single defect center scanning near-field optical microscopy on graphene. , 2013, Nano letters.

[72]  M. Frimmer,et al.  Nanomechanical method to gauge emission quantum yield applied to nitrogen-vacancy centers in nanodiamond , 2012, 1212.5081.

[73]  P Lalanne,et al.  Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. , 2013, Physical review letters.

[74]  Jérôme Wenger,et al.  Plasmonic band structure controls single-molecule fluorescence. , 2013, ACS nano.

[75]  K. Willets Super-resolution imaging of interactions between molecules and plasmonic nanostructures. , 2013, Physical chemistry chemical physics : PCCP.

[76]  Shunsuke Murai,et al.  Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources , 2013, Light: Science & Applications.

[77]  Giorgio Volpe,et al.  Multipolar radiation of quantum emitters with nanowire optical antennas , 2013, Nature Communications.

[78]  Hervé Rigneault,et al.  A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. , 2013, Nature nanotechnology.

[79]  M. Orrit,et al.  Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod. , 2013, Angewandte Chemie.

[80]  F. García-Vidal,et al.  Theory of strong coupling between quantum emitters and propagating surface plasmons. , 2012, Physical review letters.

[81]  J. Enderlein,et al.  Nanocavity-based determination of absolute values of photoluminescence quantum yields. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[82]  J. Song,et al.  Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. , 2014, Physical review letters.

[83]  J. Wenger,et al.  Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures. , 2014, Nano letters.

[84]  Mark L. Brongersma,et al.  Electrically driven subwavelength optical nanocircuits , 2014, Nature Photonics.

[85]  Jan Renger,et al.  Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching , 2014, Nature Communications.

[86]  A. Polman,et al.  Directional emission from a single plasmonic scatterer , 2014, Nature Communications.

[87]  Q. Wei,et al.  Resonant cavity modes of circular plasmonic patch nanoantennas , 2014 .

[88]  Kurt Busch,et al.  Scanning single quantum emitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states. , 2014, Nano letters.

[89]  Harald Giessen,et al.  Imaging and steering an optical wireless nanoantenna link , 2014, Nature Communications.

[90]  Yuri S. Kivshar,et al.  Hybrid nanoantennas for directional emission enhancement , 2014 .

[91]  Ankur Gupta,et al.  Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods. , 2014, ACS nano.

[92]  R. Carminati,et al.  Mapping the radiative and the apparent non-radiative local density of states in the near field of a metallic nanoantenna , 2014, 1401.2858.

[93]  J Bravo-Abad,et al.  Quantum emitters near a metal nanoparticle: strong coupling and quenching. , 2014, Physical review letters.

[94]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[95]  A. Polman,et al.  Nanoscale Excitation Mapping of Plasmonic Patch Antennas , 2014 .

[96]  N. V. van Hulst,et al.  Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles. , 2014, Nano letters.

[97]  David A. Powell,et al.  Resonant dynamics of arbitrarily shaped meta-atoms , 2014, 1405.3759.

[98]  A. Femius Koenderink,et al.  Lasing at the band edges of plasmonic lattices , 2014, 1409.7293.

[99]  Tomasz J. Antosiewicz,et al.  Plasmon–Exciton Interactions in a Core–Shell Geometry: From Enhanced Absorption to Strong Coupling , 2014 .

[100]  R. Ge,et al.  Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators , 2015, 1501.05938.

[101]  Benjamin J. M. Brenny,et al.  Robustness of plasmon phased array nanoantennas to disorder , 2015, Scientific Reports.

[102]  P. Lalanne,et al.  Non-radiative and radiative decays in nanogap emitting devices , 2015 .

[103]  H. Atwater,et al.  Electrochemical Tuning of the Dielectric Function of Au Nanoparticles , 2015 .

[104]  Philippe Lalanne,et al.  Analytical Formalism for the Interaction of Two-Level Quantum Systems with Metal Nanoresonators , 2015 .

[105]  Benjamin J. M. Brenny,et al.  Angle-Resolved Cathodoluminescence Imaging Polarimetry , 2015, 1510.07976.

[106]  H. Rigneault,et al.  Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations , 2015 .

[107]  J. Rarity,et al.  Polarization Engineering in Photonic Crystal Waveguides for Spin-Photon Entanglers. , 2014, Physical review letters.

[108]  T. Kippenberg,et al.  Plasmomechanical Resonators Based on Dimer Nanoantennas. , 2015, Nano letters.

[109]  Philip Tinnefeld,et al.  DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM. , 2015, Nano letters.

[110]  A. Miroshnichenko All-dielectric optical nanoantennas , 2012, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[111]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.

[112]  Mingming Jiang,et al.  Comparative analysis of imaging configurations and objectives for Fourier microscopy. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[113]  Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices , 2015, 1510.06693.

[114]  Alberto Boretti,et al.  Electrically Driven Quantum Light Sources , 2015 .

[115]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[116]  J. Biteen,et al.  Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale. , 2015, Nano letters.

[117]  A. Fiore,et al.  Spontaneous emission from dipole-forbidden transitions in semiconductor quantum dots , 2015 .

[118]  Jacob B Khurgin How to deal with the loss in plasmonics and metamaterials. , 2015, Nature nanotechnology.

[119]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[120]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[121]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[122]  M. Garcia-Parajo,et al.  Enhancement and Inhibition of Spontaneous Photon Emission by Resonant Silicon Nanoantennas , 2016, 1605.02913.

[123]  H. Doeleman,et al.  Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth , 2016, 1605.04181.

[124]  Nicolò Accanto,et al.  Ultrafast meets ultrasmall: controlling nanoantennas and molecules , 2016 .

[125]  Jia Wang,et al.  Super-resolution imaging of light–matter interactions near single semiconductor nanowires , 2016, Nature Communications.

[126]  Andreas W. Schell,et al.  A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures , 2016, Scientific Reports.

[127]  J. Wenger,et al.  Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting Colloidal Nanostructures at Room Temperature. , 2016, ACS nano.

[128]  Steven G. Johnson,et al.  Fundamental limits to optical response in absorptive systems. , 2015, Optics express.

[129]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[130]  A. Koenderink,et al.  Superresolution imaging of the local density of states in plasmon lattices , 2016 .

[131]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[132]  G. M. Akselrod,et al.  Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities. , 2016, Nano letters.

[133]  M. Brongersma,et al.  Probing the electrical switching of a memristive optical antenna by STEM EELS , 2015, Nature Communications.

[134]  G. Haran,et al.  Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit , 2015, Nature Communications.

[135]  E. Muljarov,et al.  Exact mode volume and Purcell factor of open optical systems , 2014, 1409.6877.

[136]  H. Rigneault,et al.  All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules. , 2016, Nano letters (Print).

[137]  Bo Zhen,et al.  Shrinking light to allow forbidden transitions on the atomic scale , 2016, Science.

[138]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[139]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters , 2018 .