High pressure annealing of HVPE GaN free-standing films: redistribution of defects and stress

The effect of high temperature, high pressure annealing on morphology, optical and structural properties of free-standing GaN films grown by hydride vapor phase epitaxy is studied. The annealing is found to change the intensities of the photoluminescence peaks as a result of a redistribution of the impurities and native defects in the thick GaN films. A positron annihilation study shows a decrease of the Ga vacancy-related defects below the detection limit after the annealing. The defect redistribution is correlated with a flattening of the stress distribution across the thickness, as revealed by micro Raman study, and with a decrease of the curvature of the annealed free-standing films.

[1]  P. Paskov,et al.  Structural characteristics and lattice parameters of hydride vapor phase epitaxial GaN free-standing quasisubstrates , 2005 .

[2]  I. Ivanov,et al.  Hydride vapor-phase epitaxial GaN thick films for quasi-substrate applications: Strain distribution and wafer bending , 2004 .

[3]  A. Roskowski,et al.  HVPE-GaN: comparison of emission properties and microstructure of films grown on different laterally overgrown templates , 2004 .

[4]  David C. Look,et al.  Ga Vacancies as Dominant Intrinsic Acceptors in GaN Grown by Hydride Vapor Phase Epitaxy , 2003 .

[5]  B. Monemar,et al.  Curvature and strain in thick HVPE-GaN for quasi-substrate applications , 2003 .

[6]  P. Paskov,et al.  Free‐Standing HVPE‐GaN Quasi‐Substrates: Impurity and Strain Distributions , 2003 .

[7]  D. Look,et al.  Depth-dependent investigation of defects and impurity doping in GaN/sapphire using scanning electron microscopy and cathodoluminescence spectroscopy , 2002 .

[8]  J. Jasinski,et al.  Correlations between spatially resolved Raman shifts and dislocation density in GaN films , 2002 .

[9]  W. J. Moore,et al.  Identification of Si and O donors in hydride-vapor-phase epitaxial GaN , 2001 .

[10]  Pierre Gibart,et al.  Raman mapping of epitaxial lateral overgrown GaN: Stress at the coalescence boundary , 2001 .

[11]  B. Monemar Bound excitons in GaN , 2001 .

[12]  S. S. Park,et al.  Characterization of free-standing hydride vapor phase epitaxy GaN , 2001 .

[13]  C. E. Stutz,et al.  Dislocation-independent Mobility in Lattice-Mismatched Epitaxy: Application To GaN , 2001 .

[14]  D. Clarke,et al.  CRACKING OF GaN FILMS , 2001 .

[15]  Paul F. Fewster,et al.  X Ray Scattering From Semiconductors , 2000 .

[16]  Jacek B. Jasinski,et al.  Electron beam and optical depth profiling of quasibulk GaN , 2000 .

[17]  P. Vennégués,et al.  Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods , 2000 .

[18]  C. Thomsen,et al.  Strain relaxation and strong impurity incorporation in epitaxial laterally overgrown GaN: Direct imaging of different growth domains by cathodoluminescence microscopy and micro-Raman spectroscopy , 1999 .

[19]  Pekka J. Hautojärvi,et al.  Chapter 5 Positron Annihilation Spectroscopy of Defects in Semiconductors , 1998 .

[20]  Michael Stavola,et al.  Identification of defects in semiconductors , 1998 .

[21]  L. Dobrzyński,et al.  Observation Of Native Ga Vacancies In Gan By Positron Annihilation , 1997 .

[22]  Krüger,et al.  Strain-related phenomena in GaN thin films. , 1996, Physical review. B, Condensed matter.

[23]  H. Amano,et al.  The growth of thick GaN film on sapphire substrate by using ZnO buffer layer , 1993 .