The effects of temperature and microstructure on the components of electromigration mass transport

Experimental data that support a recently proposed model for electromigration in the metal film interconnects are presented. The results indicate that the grain structure of the film coupled with the temperature dependence of the lattice and grain boundary diffusivities plays an important role in determining the relative contributions of these diffusion components to mass transport. For line widths in the range of the median grain size the line width dependence of median fail time, t/sub 50/, results from a change in the relative contribution of these components to the diffusional flux. The model correctly describes the experimental dependence of t/sub 50/ and activation energy on line width.<<ETX>>

[1]  P. M. Solomon,et al.  Bipolar transistor design for optimized power-delay logic circuits , 1979 .

[2]  H.-U. Schreiber,et al.  Activation energies for the different electromigration mechanisms in aluminum , 1981 .

[3]  R. E. Hoffman,et al.  The effect of relative crystal and boundary orientations on grain boundary diffusion rates , 1954 .

[4]  Carl V. Thompson,et al.  Electromigration-induced failures in interconnects with bimodal grain size distributions , 1990 .

[5]  G. Staszewski,et al.  Use of autoradiography in the study of aluminium electromigration , 1985 .

[6]  E. Kinsbron,et al.  A model for the width dependence of electromigration lifetimes in aluminum thin‐film stripes , 1980 .

[7]  J. Black,et al.  Electromigration—A brief survey and some recent results , 1969 .

[8]  P. Feltham,et al.  Grain growth in metals , 1957 .

[9]  A model for linewidth-dependent electromigration lifetime and its application to design rule scaling for narrow interconnects , 1991 .

[10]  Electromigraton activation energy dependence on AlCu interconnect linewidth and microstructure , 1992 .

[11]  Arthur J. Learn Effect of Redundant Microstructure on Electromigration‐Induced Failure , 1971 .

[12]  K. P. Rodbell,et al.  A new method for detecting electromigration failure in VLSI metallization , 1984 .

[13]  J. Black Electromigration failure modes in aluminum metallization for semiconductor devices , 1969 .

[14]  S. P. Sim Procurement specification requirements for protection against electromigration failures in aluminium metallizations , 1979 .

[15]  J. Schoen,et al.  Monte Carlo calculations of structure‐induced electromigration failure , 1980 .

[16]  B. Agarwala,et al.  Effect of Microstructure on the Electromigration Life of Thin‐Film A1–Cu Conductors , 1972 .

[17]  Chung-Yu Ting,et al.  Electromigration lifetime sudies of submicrometer-linewidth Al-Cu conductors , 1984, IEEE Transactions on Electron Devices.

[18]  P. Ghate,et al.  ELECTROMIGRATION‐INDUCED FAILURES IN ALUMINUM FILM CONDUCTORS , 1970 .

[19]  S. R. Shatynski,et al.  Electromigration in sputtered Al-Cu thin films , 1983 .

[20]  T. T. Sheng,et al.  Linewidth dependence of electromigration in evaporated Al‐0.5%Cu , 1980 .

[21]  H.-U. Schreiber,et al.  Electromigration mechanisms in aluminum lines , 1985 .

[22]  J. Mandel,et al.  Reproducibility of electromigration measurements , 1987, IEEE Transactions on Electron Devices.

[23]  M. J. Attardo,et al.  Statistical Metallurgical Model for Electromigration Failure in Aluminum Thin‐Film Conductors , 1971 .

[24]  B. Agarwala,et al.  Dependence of Electromigration‐Induced Failure Time on Length and Width of Aluminum Thin‐Film Conductors , 1970 .