A Numerical Study of Wind-Turbine Wakes for Three Atmospheric Stability Conditions

The effects of atmospheric stability on wind-turbine wakes are studied via large-eddy simulations. Three stability conditions are considered: stable, neutral, and unstable, with the same geostrophic wind speed aloft and the same Coriolis frequency. Both a single 5-MW turbine and a wind farm of five turbines are studied. The single-turbine wake is strongly correlated with stability, in terms of velocity deficit, turbulence kinetic energy (TKE) and temperature distribution. Because of the Coriolis effect, the wake shape deviates from a Gaussian distribution. For the wind-farm simulations, the separation of the core region and outer region is clear for the stable and neutral cases, but less distinct for the unstable case. The unstable case exhibits strong horizontal variations in wind speed. Local accelerations such as related to aisle jets are also observed, whose features depend on stability. The added TKE in the wind farm increases with stability. The highest power extraction and lowest power deficit are observed for the unstable case.

[1]  Kiran Bhaganagar,et al.  Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines , 2014 .

[2]  Mark Z. Jacobson,et al.  Geographical and seasonal variability of the global “practical” wind resources , 2013 .

[3]  Leo E. Jensen,et al.  The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm , 2010 .

[4]  Johan Meyers,et al.  Optimal turbine spacing in fully developed wind farm boundary layers , 2012 .

[5]  Jens Nørkær Sørensen,et al.  Numerical Modeling of Wind Turbine Wakes , 2002 .

[6]  Ronald Calhoun,et al.  A new formulation for rotor equivalent wind speed for wind resource assessment and wind power forecasting , 2016 .

[7]  Rebecca J. Barthelmie,et al.  In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles , 2013 .

[8]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[9]  Julie K. Lundquist,et al.  Utility-Scale Wind Turbine Wake Characterization Using Nacelle-Based Long-Range Scanning Lidar , 2014 .

[10]  Rozenn Wagner,et al.  Accounting for the speed shear in wind turbine power performance measurement , 2011 .

[11]  S. P. S. Arya,et al.  Introduction to micrometeorology , 1988 .

[12]  W. Kempton,et al.  Taming hurricanes with arrays of offshore wind turbines , 2013 .

[13]  Charles Meneveau The top-down model of wind farm boundary layers and its applications , 2012 .

[14]  C. Meneveau,et al.  Large eddy simulation study of fully developed wind-turbine array boundary layers , 2010 .

[15]  Siegfried Raasch,et al.  Numerical simulation of rotating turbulent thermal convection , 1991 .

[16]  G. Larsen,et al.  Light detection and ranging measurements of wake dynamics part I: one‐dimensional scanning , 2010 .

[17]  T. W. Horst,et al.  Crop Wind Energy Experiment (CWEX): Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with a Wind Farm , 2013 .

[18]  Siegfried Raasch,et al.  PALM - A large-eddy simulation model performing on massively parallel computers , 2001 .

[19]  Martin Kühn,et al.  The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms , 2015 .

[20]  Albert A. M. Holtslag,et al.  Dispersion of a Passive Tracer in Buoyancy- and Shear-Driven Boundary Layers , 2003 .

[21]  Jimy Dudhia,et al.  Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: a composite‐based analysis with the Weather Research and Forecasting model over Horns Rev , 2015 .

[22]  S. Basu,et al.  Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach , 2005, physics/0502134.

[23]  Rebecca J. Barthelmie,et al.  Analytical modelling of wind speed deficit in large offshore wind farms , 2006 .

[24]  C. L. Archer,et al.  Sensitivity Issues in Finite-Difference Large-Eddy Simulations of the Atmospheric Boundary Layer with Dynamic Subgrid-Scale Models , 2015, Boundary-Layer Meteorology.

[25]  Niranjan Ghaisas,et al.  Evaluation of layout and atmospheric stability effects in wind farms using large‐eddy simulation , 2017 .

[26]  Jeffrey D. Mirocha,et al.  Implementation of a Generalized Actuator Disk Wind Turbine Model into the Weather Research and Forecasting Model for Large-Eddy Simulation , 2014 .

[27]  C. L. Archer,et al.  Quantifying the sensitivity of wind farm performance to array layout options using large‐eddy simulation , 2013 .

[28]  B. Stevens,et al.  Structure of the Entrainment Zone Capping the Convective Atmospheric Boundary Layer , 1998 .

[29]  Fernando Porté-Agel,et al.  On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer , 2013, Boundary-Layer Meteorology.

[30]  P. Duynkerke,et al.  Large Eddy Simulation of Trade Wind Cumulus Clouds. , 1993 .

[31]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[32]  Branko Kosovic,et al.  Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers , 1997, Journal of Fluid Mechanics.

[33]  R. Stull Stable Boundary Layer , 1988 .

[34]  A. Holtslag,et al.  An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer , 2004 .

[35]  J. McWilliams,et al.  A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows , 1994 .

[36]  Somnath Baidya Roy,et al.  Impacts of wind farms on surface air temperatures , 2010, Proceedings of the National Academy of Sciences.

[37]  A. Crespo,et al.  Turbulence characteristics in wind-turbine wakes , 1996 .

[38]  J. Redelsperger,et al.  A turbulence scheme allowing for mesoscale and large‐eddy simulations , 2000 .

[39]  Fernando Porté-Agel,et al.  Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study , 2014 .

[40]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[41]  Liming Zhou,et al.  Impacts of wind farms on land surface temperature , 2012 .

[42]  J. Sørensen,et al.  Wind turbine wake aerodynamics , 2003 .

[43]  L. J. Vermeera,et al.  Wind turbine wake aerodynamics , 2003 .

[44]  Leo E. Jensen,et al.  Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms , 2010 .

[45]  F. Porté-Agel,et al.  A new analytical model for wind-turbine wakes , 2013 .

[46]  John H. Prueger,et al.  Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm , 2014 .

[47]  Julie K. Lundquist,et al.  Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics , 2015 .

[48]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[49]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[50]  Julie K. Lundquist,et al.  Mesoscale Influences of Wind Farms throughout a Diurnal Cycle , 2012 .

[51]  F. Porté-Agel,et al.  Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study , 2010 .

[52]  M. Macvean,et al.  Resolution Sensitivity and Scaling of Large-Eddy Simulations of the Stable Boundary Layer , 2004 .

[53]  J. Michalakes,et al.  A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics , 2012 .

[54]  S. Roy Simulating impacts of wind farms on local hydrometeorology , 2011 .

[55]  Kiran Bhaganagar,et al.  The effects of mean atmospheric forcings of the stable atmospheric boundary layer on wind turbine wake , 2015 .

[56]  F. Porté-Agel,et al.  Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects , 2012, Boundary-Layer Meteorology.

[57]  F. Porté-Agel,et al.  Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer , 2011 .

[58]  P. J. Mason,et al.  Large‐eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model , 1994 .

[59]  Jimy Dudhia,et al.  Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model , 2012 .

[60]  Caroline Draxl,et al.  Investigating wind turbine impacts on near-wake flow using profiling lidar data and large-eddy simulations with an actuator disk model , 2015 .

[61]  Charles Meneveau,et al.  A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows , 2005 .

[62]  Barry Koren,et al.  A robust upwind discretization method for advection, diffusion and source terms , 1993 .

[63]  M. Parlange,et al.  Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers , 2011 .

[64]  J. Lundquist,et al.  Atmospheric stability affects wind turbine power collection , 2011 .

[65]  P. Sullivan,et al.  A Comparison of Shear- and Buoyancy-Driven Planetary Boundary Layer Flows , 1994 .

[66]  J. Højstrup,et al.  A Simple Model for Cluster Efficiency , 1987 .

[67]  F. Porté-Agel,et al.  Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations , 2011 .

[68]  Cristina L. Archer,et al.  Self‐similarity and turbulence characteristics of wind turbine wakes via large‐eddy simulation , 2015 .

[69]  F. Nieuwstadt The Turbulent Structure of the Stable, Nocturnal Boundary Layer , 1984 .

[70]  Mark Z. Jacobson,et al.  California offshore wind energy potential , 2010 .