Controlling entanglement between two separated atoms by quantum-jump-based feedback

We consider a model consisting of two (two-level) atoms which are placed in two separated heavily damped cavities respectively. We show that the quantum-jump-based feedback based on joint measurement can be used to generate a steady entangled state between two atoms against decoherence. We analyse the effects of general local control Hamiltonians in the performance of entanglement production and show that by choosing a proper control Hamiltonian the steady maximal entanglement between two separated atoms can be protected.

[1]  J. Cirac,et al.  Quantum simulations based on measurements and feedback control , 2008, 0811.1844.

[2]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[3]  J. J. Hope,et al.  Stabilizing entanglement by quantum-jump-based feedback , 2007 .

[4]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[5]  G. J. Milburn,et al.  Dynamical creation of entanglement by homodyne-mediated feedback (9 pages) , 2004, quant-ph/0409154.

[6]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[7]  G. Milburn,et al.  Entanglement in the steady state of a collective-angular-momentum (Dicke) model , 2002 .

[8]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[9]  Klaus Mølmer,et al.  Monte Carlo wavefunctions in quantum optics , 1996 .

[10]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[11]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[12]  Repeat-until-success entanglement of distant atoms via single photon interference , 2007 .

[13]  J. J. Hope,et al.  Controlling entanglement by direct quantum feedback , 2008, 0807.1144.

[14]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  Jian Zou,et al.  Steady atomic entanglement with different quantum feedbacks , 2008 .

[16]  H M Wiseman,et al.  Capture and release of a conditional state of a cavity QED system by quantum feedback. , 2002, Physical review letters.

[17]  J. Cirac,et al.  IDEAL QUANTUM COMMUNICATION OVER NOISY CHANNELS : A QUANTUM OPTICAL IMPLEMENTATION , 1997, quant-ph/9702036.

[18]  Milburn,et al.  Squeezing via feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[19]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[20]  Stefano Mancini,et al.  Towards feedback control of entanglement , 2005 .

[21]  Naoki Yamamoto Parametrization of the feedback Hamiltonian realizing a pure steady state , 2005 .

[22]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[23]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[24]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[25]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[26]  Daniel A. Lidar,et al.  CONCATENATING DECOHERENCE-FREE SUBSPACES WITH QUANTUM ERROR CORRECTING CODES , 1998, quant-ph/9809081.

[27]  H. Carmichael An open systems approach to quantum optics , 1993 .

[28]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[29]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .