Handling Missing Data in Extended Possibility-based Fuzzy Relational Databases

Handling missing data is widely studied to make proper replacement and reduce uncertainty of data. Several approaches have been proposed for providing the most possible results. However, few studies provide solutions to the problem of missing data in extended possibility-based fuzzy relational (EPFR) databases. This type of problem in the context of EPFR databases is difficult to resolve because of the complexity of the data involved. In this paper, we propose an approach of filling missing data and query processing of the databases. To obtain the rational predict of the missing data, we adopt a concept and measurement of proximate equality of tuples to define data operation and fuzzy functional dependency (FFD). We provide a method to predict the missing data and replace the data based on our proposal. The results of the missing value process preserve those FFDs that hold in the original database instance.

[1]  Zongmin Ma,et al.  Data dependencies in extended possibility‐based fuzzy relational databases , 2002, Int. J. Intell. Syst..

[2]  Etienne E. Kerre,et al.  A General Treatment of Data Redundancy in a Fuzzy Relational Data Model , 1992, J. Am. Soc. Inf. Sci..

[3]  Zongmin Ma,et al.  Generalization of strategies for fuzzy query translation in classical relational databases , 2007, Inf. Softw. Technol..

[4]  E. Kerre,et al.  On the lossless-join decomposition of relation scheme(s) in a fuzzy relational data model , 1993, 1993 (2nd) International Symposium on Uncertainty Modeling and Analysis.

[5]  Pei-Chann Chang,et al.  Consistent data operations for multi-databases in extended possibility-based data models , 2009, Expert Syst. Appl..

[6]  Didier Dubois,et al.  Fuzzy Functional Dependencies and Redundancy Elimination , 1998, J. Am. Soc. Inf. Sci..

[7]  Soumitra Dutta,et al.  Approximate reasoning by analogy to answer null queries , 1991, Int. J. Approx. Reason..

[8]  Ivo Düntsch,et al.  Maximum Consistency of Incomplete Data via Non-Invasive Imputation , 2004, Artificial Intelligence Review.

[9]  F. Mili,et al.  Fuzzy data compression based on data dependencies , 2002, Int. J. Intell. Syst..

[10]  Etienne Kerre,et al.  The dependency-preserving decomposition and a testing algorithm in a fuzzy relational data model , 1995 .

[11]  Juan C. Cubero,et al.  A new definition of fuzzy functional dependency in fuzzy relational databases , 1994, Int. J. Intell. Syst..

[12]  Didier Dubois,et al.  Fuzzy functional dependencies-an overview and a critical discussion , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[13]  Zongmin Ma,et al.  Updating extended possibility‐based fuzzy relational databases , 2007, Int. J. Intell. Syst..

[14]  S. M. Deen Fundamentals of Data Base Systems , 1977, Macmillan Computer Science Series.

[15]  Elke A. Rundensteiner,et al.  On nearness measures in fuzzy relational data models , 1989, Int. J. Approx. Reason..

[16]  Hung-Pin Chiu,et al.  A novel approach for missing data processing based on compounded PSO clustering , 2009 .

[17]  Tshilidzi Marwala,et al.  The use of genetic algorithms and neural networks to approximate missing data in database , 2005, IEEE 3rd International Conference on Computational Cybernetics, 2005. ICCC 2005..

[18]  B. Tyagi,et al.  Fuzzy functional dependencies and independencies in extended fuzzy relational database models , 1995 .

[19]  Wei Wei,et al.  A generic neural network approach for filling missing data in data mining , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[20]  Zongmin Ma,et al.  Semantic measure of fuzzy data in extended possibility-based fuzzy relational databases , 2000, International Journal of Intelligent Systems.

[21]  M. Les,et al.  A knowledge server for reasoning about temporal constraints between classes and instances of events , 2004 .

[22]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[23]  S. Jyothi,et al.  Multivalued dependencies in fuzzy relational databases and lossless join decomposition , 1997, Fuzzy Sets Syst..

[24]  Etienne E. Kerre,et al.  Normalization Based on Fuzzy Functional Dependency in a Fuzzy Relational Data Model , 1996, Inf. Syst..

[25]  Julie Yu-Chih Liu,et al.  Lossless Join Decomposition for Extended Possibility-Based Fuzzy Relational Databases , 2014, J. Appl. Math..

[26]  Maciej Grzenda,et al.  Handling Incomplete Data Using Evolution of Imputation Methods , 2009, ICANNGA.

[27]  Henri Prade,et al.  Generalizing Database Relational Algebra for the Treatment of Incomplete/Uncertain Information and Vague Queries , 1984, Inf. Sci..

[28]  Patrick Bosc,et al.  On the impact of regular functional dependencies when moving to a possibilistic database framework , 2003, Fuzzy Sets Syst..

[29]  Etienne E. Kerre,et al.  A computational algorithm for the FFD transitive closure and a complete axiomatization of fuzzy functional dependence (FFD) , 1994, Int. J. Intell. Syst..

[30]  B. Bhuniya,et al.  Lossless Join Property in Fuzzy Relational Databases , 1993, Data Knowl. Eng..

[31]  Julie Yu-Chih Liu,et al.  Data integration constraints for consistent data redundancy in fuzzy databases , 2008, Int. J. Intell. Syst..

[32]  Sujeet Shenoi,et al.  Proximity relations in the fuzzy relational database model , 1999 .

[33]  Arun K. Majumdar,et al.  Fuzzy Functional Dependencies and Lossless Join Decomposition of Fuzzy Relational Database Systems , 1988, ACM Trans. Database Syst..

[34]  Zongmin Ma,et al.  Handling fuzzy information in extended possibility‐based fuzzy relational databases , 2002, Int. J. Intell. Syst..

[35]  Tapan K. Bhattacharjee,et al.  Axiomatisation of fuzzy multivalued dependencies in a fuzzy relational data model , 1998, Fuzzy Sets Syst..

[36]  Sujeet Shenoi,et al.  Analyzing FD Inference in Relational Databases , 1996, Data Knowl. Eng..