Distributed Kalman filtering fusion with packet loss or intermittent communications from local estimators to fusion center

This paper considers the distributed Kalman filtering fusion with passive packet loss or initiative intermittent communications from local estimators to fusion center while the process noise does exist. When the local estimates are not lost too much, the authors propose an optimal distributed fusion algorithm which is equivalent to the corresponding centralized Kalman filtering fusion with complete communications even if the process noise does exist. When this condition is not satisfied, based on the above global optimality result and sensor data compression, the authors propose a suboptimal distributed fusion algorithm. Numerical examples show that this suboptimal algorithm still works well and significantly better than the standard distributed Kalman filtering fusion subject to packet loss even if the process noise power is quite large.

[1]  Kai-Yuan Cai,et al.  Multisensor Decision And Estimation Fusion , 2003, The International Series on Asian Studies in Computer and Information Science.

[2]  Yaakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking , 1995 .

[3]  Chee-Yee Chong,et al.  Distributed Tracking in Distributed Sensor Networks , 1986 .

[4]  Bruno Sinopoli,et al.  Kalman filtering with intermittent observations , 2004, IEEE Transactions on Automatic Control.

[5]  Zhi-Quan Luo,et al.  Distributed Estimation Using Reduced-Dimensionality Sensor Observations , 2005, IEEE Transactions on Signal Processing.

[6]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  Yunmin Zhu,et al.  Sensors' optimal dimensionality compression matrix in estimation fusion , 2005, Autom..

[9]  Stelios C. A. Thomopoulos,et al.  Distributed Fusion Architectures and Algorithms for Target Tracking , 1997, Proc. IEEE.

[10]  Sumit Roy,et al.  Decentralized structures for parallel Kalman filtering , 1988 .

[11]  Guanrong Chen,et al.  Kalman Filtering with Real-time Applications , 1987 .

[12]  Luca Schenato,et al.  Optimal sensor fusion for distributed sensors subject to random delay and packet loss , 2007, 2007 46th IEEE Conference on Decision and Control.

[13]  John N. Tsitsiklis,et al.  Data fusion with minimal communication , 1994, IEEE Trans. Inf. Theory.

[14]  Yunmin Zhu,et al.  Optimal Kalman filtering fusion with cross-correlated sensor noises , 2007, Autom..

[15]  Jason L. Speyer,et al.  A low-power filtering scheme for distributed sensor networks , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[16]  Alessandro Chiuso,et al.  Information fusion strategies from distributed filters in packet-drop networks , 2008, 2008 47th IEEE Conference on Decision and Control.

[17]  Yunmin Zhu,et al.  The optimality for the distributed Kalman filtering fusion with feedback , 2001, Autom..

[18]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .