Labeling neurons in vivo for morphological and functional studies

Increasingly sophisticated strategies for labeling cells in vivo are providing unprecedented opportunities to study neurons in living animals. Transgenic expression of genetically encoded reporters enables us to monitor changes in neuronal activity in response to sensory stimuli, and the labeling of single neurons with fluorescent proteins allows the dynamics of neuronal connectivity to be observed in transgenic animals over periods ranging from minutes to months. Advances in transient labeling techniques such as viral infection and electroporation provide a rapid means by which to analyze neuronal gene function in vivo. These new approaches to labeling, manipulating and imaging neurons in intact organisms are transforming the way in which the nervous system is studied.

[1]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[2]  Matt Wachowiak,et al.  In Vivo Imaging of Neuronal Activity by Targeted Expression of a Genetically Encoded Probe in the Mouse , 2004, Neuron.

[3]  I. Katona,et al.  In Vivo Labeling of Parvalbumin-Positive Interneurons and Analysis of Electrical Coupling in Identified Neurons , 2002, The Journal of Neuroscience.

[4]  E. S. Ruthazer,et al.  Control of Axon Branch Dynamics by Correlated Activity in Vivo , 2003, Science.

[5]  P. Joset,et al.  Screening for gene function in chicken embryo using RNAi and electroporation , 2003, Nature Biotechnology.

[6]  Jeremy Nathans,et al.  A Noninvasive Genetic/Pharmacologic Strategy for Visualizing Cell Morphology and Clonal Relationships in the Mouse , 2003, The Journal of Neuroscience.

[7]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[8]  John Tyler Bonner,et al.  Morphogenesis , 1965, Cell.

[9]  Michael T. McManus,et al.  A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference , 2003, Nature Genetics.

[10]  C. Cepko,et al.  Electroporation and RNA interference in the rodent retina in vivo and in vitro , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Owe Orwar,et al.  Single-cell electroporation. , 2003, Current opinion in biotechnology.

[12]  G S Mastick,et al.  Sparking new frontiers: using in vivo electroporation for genetic manipulations. , 2001, Developmental biology.

[13]  Maria Jansson,et al.  Targeted transgene expression in rat brain using lentiviral vectors , 2003, Journal of neuroscience research.

[14]  D. Kioussis,et al.  Locus Control Region Function and Heterochromatin-Induced Position Effect Variegation , 1996, Science.

[15]  Gero Miesenböck,et al.  Transmission of Olfactory Information between Three Populations of Neurons in the Antennal Lobe of the Fly , 2002, Neuron.

[16]  Ronald L. Davis,et al.  Detection of Calcium Transients in DrosophilaMushroom Body Neurons with Camgaroo Reporters , 2003, The Journal of Neuroscience.

[17]  Liqun Luo,et al.  Target neuron prespecification in the olfactory map of Drosophila , 2001, Nature.

[18]  Richard Axel,et al.  Visualizing an Olfactory Sensory Map , 1996, Cell.

[19]  T. Oshitari,et al.  Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach. , 2002, Micron.

[20]  N. Kasthuri,et al.  The role of neuronal identity in synaptic competition , 2003, Nature.

[21]  Ethan K. Scott,et al.  A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis , 2003, Development.

[22]  M. Zhuo,et al.  Calmodulin Regulates Synaptic Plasticity in the Anterior Cingulate Cortex and Behavioral Responses: A Microelectroporation Study in Adult Rodents , 2003, The Journal of Neuroscience.

[23]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[24]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[25]  Harukazu Nakamura,et al.  Gene silencing in chick embryos with a vector‐based small interfering RNA system , 2003, Development, growth & differentiation.

[26]  G. Feng,et al.  Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition , 2003, Nature.

[27]  Martin P Meyer,et al.  In vivo imaging of synapse formation on a growing dendritic arbor , 2004, Nature Neuroscience.

[28]  A. McAllister,et al.  Techniques for gene transfer into neurons , 2002, Current Opinion in Neurobiology.

[29]  Martin Chalfie,et al.  Green fluorescent protein as a marker for gene expression , 1994 .

[30]  T. Serwold,et al.  Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases , 2022 .

[31]  G. Miesenböck,et al.  Genetic methods for illuminating the function of neural circuits , 2004, Current Opinion in Neurobiology.

[32]  Winfried Denk,et al.  Targeted Whole-Cell Recordings in the Mammalian Brain In Vivo , 2003, Neuron.

[33]  Thomas Nevian,et al.  High-efficiency transfection of individual neurons using modified electrophysiology techniques , 2003, Journal of Neuroscience Methods.

[34]  A. Brand,et al.  The GAL4 system as a tool for unravelling the mysteries of the Drosophila nervous system , 1995, Current Opinion in Neurobiology.

[35]  D. Reiff,et al.  Differential Regulation of Active Zone Density during Long-Term Strengthening of Drosophila Neuromuscular Junctions , 2002, The Journal of Neuroscience.

[36]  J. Lichtman,et al.  In Vivo Time-Lapse Imaging of Synaptic Takeover Associated with Naturally Occurring Synapse Elimination , 2003, Neuron.

[37]  A. Wong,et al.  Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain , 2003, Cell.

[38]  G. Feng,et al.  Asynchronous Synapse Elimination in Neonatal Motor Units Studies Using GFP Transgenic Mice , 2001, Neuron.

[39]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[40]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[41]  M. Stark,et al.  Cell labeling and gene misexpression by electroporation. , 2002, Methods in molecular biology.

[42]  David Baltimore,et al.  Germline Transmission and Tissue-Specific Expression of Transgenes Delivered by Lentiviral Vectors , 2002, Science.

[43]  Scott E. Fraser,et al.  The neuronal naturalist: watching neurons in their native habitat , 2001, Nature Neuroscience.

[44]  George J. Augustine,et al.  A Genetically Encoded Ratiometric Indicator for Chloride Capturing Chloride Transients in Cultured Hippocampal Neurons , 2000, Neuron.

[45]  R. Krumlauf,et al.  An impulse to the brain—using in vivo electroporation , 2001, Nature Neuroscience.

[46]  A. Fiala,et al.  Genetically Expressed Cameleon in Drosophila melanogaster Is Used to Visualize Olfactory Information in Projection Neurons , 2002, Current Biology.

[47]  Inder M Verma,et al.  A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Lawrence C Katz,et al.  Dendritic stability in the adult olfactory bulb , 2003, Nature Neuroscience.

[49]  Kurt Haas,et al.  Single-Cell Electroporationfor Gene Transfer In Vivo , 2001, Neuron.

[50]  Azad Bonni,et al.  Cdh1-APC Controls Axonal Growth and Patterning in the Mammalian Brain , 2004, Science.

[51]  G. Struhl,et al.  Compartment boundarles and the control of Drosophila limb pattern by bedgebog protein , 1994 .

[52]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[53]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.