LARGE-SCALE AUTOREGRESSIVE SYSTEM IDENTIFICATION USING KRONECKER PRODUCT EQUATIONS

By exploiting the intrinsic structure and/or sparsity of the system coefficients in large-scale system identification, one can enable efficient processing. In this paper, we employ this strategy for large-scale single-input multiple-output autoregressive system identification by assuming the coefficients can be well approximated by Kronecker products of smaller vectors. We show that the identification problem can be refor-mulated as the computation of a Kronecker product equation, allowing one to use optimization-based and algebraic solvers.

[1]  Nico Vervliet,et al.  Irregular heartbeat classification using Kronecker Product Equations , 2017, 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[2]  Nico Vervliet,et al.  Face recognition as a kronecker product equation , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[3]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[4]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[5]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[6]  Nico Vervliet,et al.  Linear systems with a canonical polyadic decomposition constrained solution: Algorithms and applications , 2018, Numer. Linear Algebra Appl..

[7]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[8]  Michel Verhaegen,et al.  K4SID: Large-Scale Subspace Identification With Kronecker Modeling , 2019, IEEE Transactions on Automatic Control.

[9]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[10]  D Farina,et al.  Blind source identification from the multichannel surface electromyogram , 2014, Physiological measurement.

[11]  Alexander Bertrand,et al.  Distributed Signal Processing for Wireless EEG Sensor Networks , 2015, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[12]  Jacob Benesty,et al.  Linear System Identification Based on a Kronecker Product Decomposition , 2018, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[13]  Lieven De Lathauwer,et al.  A Tensor-Based Method for Large-Scale Blind Source Separation Using Segmentation , 2017, IEEE Transactions on Signal Processing.

[14]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[15]  Lars Grasedyck,et al.  Polynomial Approximation in Hierarchical Tucker Format by Vector – Tensorization , 2010 .

[16]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[17]  André Lima Férrer de Almeida,et al.  Identification of separable systems using trilinear filtering , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[18]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[19]  Lieven De Lathauwer,et al.  Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-(Lr, Lr, 1) Terms , 2011, SIAM J. Matrix Anal. Appl..

[20]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[21]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[22]  Michel Verhaegen,et al.  QUARKS: Identification of Large-Scale Kronecker Vector-Autoregressive Models , 2016, IEEE Transactions on Automatic Control.