Molecular dynamics simulations of the gramicidin channel.

CONTENTS PERSPECTIVE AND OVERVIEW . . . .. . .. . .. .. . .. . .. . . . .. . .. .. . .. . .. . .. . 732 SHORT HISTORY . .. . .. .. . . . .. . .. .. . .. . .. .. . .. . .. .. . . . . .. . . . .. . .. . .. . .. 733 MICROSCOPIC MODELS AND COMPUTATIONAL APPROACHES. . . . . . . 734 Structural Models . . .... . . . . . . .. . . .. . . . . . . . . ... . .. . . . .. . .. . . .. . . 735 The FBL Model .. . . . . . . .. .. . .. . . . .. . . . . . . .. . .. . . . .. . .. . .. .. . . . ... .. . . 736 The P E Model .. . . .... . .... . .. . . . .. . .. . .. .. . ... .. .. . .. . .. .. . .. . .. . .. . 736 The FVC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 The MBWH Model . . . . . . . . . . . .. . . . . . . . . . . . .. . .. .. . . . . .. . . . .. . .. . .. . .. 738 Th e RK Mod els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739 Organic Ion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740 The C SJM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 Th e LJ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 Th e A W Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742 MAIN RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743 Channel Con formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743 Struc ture and Dynamic s o f Single File Wa ter .. . .. ... . . . . . . . . .. . .. . .. . .. 743 Energy Pro f i les . .. . . . .. . . . .. . .. .. . . . . .. . . . . . . .. . .. . . . . . . .. . . . .. . . . . . . 745 Other Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751 Dynamical Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 CONCLUSION AND CRITICAL DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 753

[1]  Y. Ovchinnikov,et al.  1H‐NMR study of gramicidin A transmembrane ion channel , 1985, FEBS letters.

[2]  Urry Dw,et al.  The Gramicidin A Transmembrane Channel: A Proposed π(L,D) Helix , 1971 .

[3]  J. F. Hinton,et al.  TI-205 nuclear magnetic resonance determination of the thermodynamic parameters for the binding of monovalent cations to gramicidins A and C. , 1988, Biophysical journal.

[4]  O. Andersen,et al.  Amino acid substitutions and ion channel function. Model-dependent conclusions. , 1992, Biophysical journal.

[5]  S. Hladky,et al.  Ion Movements in Gramicidin Channels , 1984 .

[6]  Benoît Roux,et al.  Molecular basis for the Born model of ion solvation , 1990 .

[7]  J. Brickmann,et al.  Molecular dynamics study of ion transport in transmembrane protein channels. , 1981, Biophysical chemistry.

[8]  S. Ranganathan,et al.  The gramicidin A channel: theoretical energy profile computed for single occupancy by a divalent cation, Ca2+ , 1985 .

[9]  P. Läuger Ion transport through pores: a rate-theory analysis. , 1973, Biochimica et biophysica acta.

[10]  J. E. Quinn,et al.  Cooperative effects in simulated water , 1979, Nature.

[11]  M. Karplus,et al.  Dynamics of folded proteins , 1977, Nature.

[12]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[13]  O. Andersen,et al.  Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. , 1991, Biochemistry.

[14]  A. Pullman,et al.  Interactions and packing of lipids around a helical hydrophobic polypeptide. The system gramicidin A/glycerylmonooleate , 1991 .

[15]  C. Etchebest,et al.  Energy profile of Cs+ in gramicidin A in the presence of water. Problem of the ion selectivity of the channel. , 1988, Journal of biomolecular structure & dynamics.

[16]  C. Etchebest,et al.  The effect of the amino-acid side chains on the energy profiles for ion transport in the gramicidin A channel. , 1985, Journal of Biomolecular Structure and Dynamics.

[17]  V. Naik,et al.  Vibrational analysis of the structure of gramicidin A. I. Normal mode analysis. , 1986, Biophysical journal.

[18]  C. Etchebest,et al.  The Gramicidin a Channel: Left Versus Right-Handed Helix , 1988 .

[19]  J. Valleau,et al.  A Monte Carlo method for obtaining the interionic potential of mean force in ionic solution , 1975 .

[20]  Peter C. Jordan,et al.  Why is gramicidin valence selective? A theoretical study. , 1987, Biophysical journal.

[21]  Monte Carlo studies of a model for lipid-gramicidin A bilayers. , 1992, Biochimica et biophysica acta.

[22]  Peter C. Jordan,et al.  Molecular dynamics simulation of cation motion in water-filled gramicidinlike pores. , 1984, Biophysical journal.

[23]  C. Etchebest,et al.  The gramicidin A channel: comparison of the energy profiles of Na+, K+ and Cs+ , 1984, FEBS letters.

[24]  B. Montgomery Pettitt,et al.  Alkali halides in water: Ion–solvent correlations and ion–ion potentials of mean force at infinite dilution , 1986 .

[25]  A. Pullman Energy profiles in the gramicidin A channel , 1987, Quarterly Reviews of Biophysics.

[26]  H. L. Scott,et al.  Monte Carlo studies of lipid chains and gramicidin A in a model membrane. , 1989, Biochemical and biophysical research communications.

[27]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[28]  J. Sunner,et al.  Ions-gas phase and solution-dipolar aprotic solvents , 1985 .

[29]  M Karplus,et al.  The normal modes of the gramicidin-A dimer channel. , 1988, Biophysical journal.

[30]  C. Etchebest,et al.  The gramicidin A channel: the energy profile for single and double occupancy in a head‐to‐head β6.3 3,3‐helical dimer backbone , 1983 .

[31]  E. Clementi,et al.  Interaction of K+ ion with the solvated gramicidin A transmembrane channel. , 1985, Biophysical journal.

[32]  Microscopic effect of an applied voltage on the solvated gramicidin a transmembrane channel in the presence of Na+ and K+ cations , 1985 .

[33]  Benoît Roux,et al.  Non-additivity in cation—peptide interactions. A molecular dynamics and ab initio study of Na+ in the gramicidin channel , 1993 .

[34]  Peter C. Jordan,et al.  Nonlinear dielectric behavior of water in transmembrane ion channels : ion energy barriers and the channel dielectric constant , 1992 .

[35]  G. Schulz,et al.  Molecular architecture and electrostatic properties of a bacterial porin. , 1991, Science.

[36]  O. Matsuoka,et al.  CI study of the water dimer potential surface , 1976 .

[37]  B. Cornell,et al.  Solid-state 13C-NMR studies of the effects of sodium ions on the gramicidin A ion channel. , 1990, Biochimica et biophysica acta.