Robust and Resource-Efficient Quantum Circuit Approximation

We present QEst, a procedure to systematically generate approximations for quantum circuits to reduce their CNOT gate count. Our approach employs circuit partitioning for scalability with procedures to 1) reduce circuit length using approximate synthesis, 2) improve fidelity by running circuits that represent key samples in the approximation space, and 3) reason about approximation upper bound. Our evaluation results indicate that our approach of “dissimilar” approximations provides close fidelity to the original circuit. Overall, the results indicate that QEst can reduce CNOT gate count by 30-80% on ideal systems and decrease the impact of noise on existing and near-future quantum systems.

[1]  Thomas Alexander,et al.  Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments , 2018, ArXiv.

[2]  Robert Wille,et al.  Mapping Quantum Circuits to IBM QX Architectures Using the Minimal Number of SWAP and H Operations , 2019, 2019 56th ACM/IEEE Design Automation Conference (DAC).

[3]  Margaret Martonosi,et al.  Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[4]  A. Ciric,et al.  A dual temperature simulated annealing approach for solving bilevel programming problems , 1998 .

[5]  Krysta Marie Svore,et al.  Asymptotically Optimal Topological Quantum Compiling , 2013, Physical review letters.

[6]  Tirthak Patel,et al.  VERITAS: Accurately Estimating the Correct Output on Noisy Intermediate-Scale Quantum Computers , 2020, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis.

[7]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[8]  Matthias Christandl,et al.  Quantum Circuits for Isometries , 2015, 1501.06911.

[9]  Katherine A. Yelick,et al.  QFAST: Conflating Search and Numerical Optimization for Scalable Quantum Circuit Synthesis , 2021, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE).

[10]  V.V. Shende,et al.  Synthesis of quantum-logic circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Robert König,et al.  Quantum advantage with shallow circuits , 2017, Science.

[12]  Henry Hoffmann,et al.  Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers , 2019, ASPLOS.

[13]  Gushu Li,et al.  Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices , 2018, ASPLOS.

[14]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[15]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  Costin Iancu,et al.  Towards Optimal Topology Aware Quantum Circuit Synthesis , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[17]  Costin Iancu,et al.  LEAP: Scaling Numerical Optimization Based Synthesis Using an Incremental Approach , 2021, ArXiv.

[18]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[19]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[20]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[21]  Aleks Kissinger,et al.  CNOT circuit extraction for topologically-constrained quantum memories , 2019, Quantum Inf. Comput..

[22]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[23]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[24]  Fuzhen Zhang,et al.  A Trace Inequality for Unitary Matrices , 1994 .

[25]  Robert Wille,et al.  Compiling SU(4) quantum circuits to IBM QX architectures , 2018, ASP-DAC.

[26]  Moinuddin K. Qureshi,et al.  Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers , 2018, ASPLOS.

[27]  Roger Colbeck,et al.  Introduction to UniversalQCompiler , 2019, ArXiv.

[28]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[29]  Thomas G. Draper,et al.  A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.

[30]  Davide Castelvecchi,et al.  IBM's quantum cloud computer goes commercial , 2017, Nature.

[31]  Michele Mosca,et al.  Quantum circuit optimizations for NISQ architectures , 2019, Quantum Science and Technology.

[32]  Daniel Nigg,et al.  Compiling quantum algorithms for architectures with multi-qubit gates , 2016, 1601.06819.

[33]  W. D. de Jong,et al.  ArQTiC: A Full-stack Software Package for Simulating Materials on Quantum Computers , 2021, ACM Transactions on Quantum Computing.

[34]  Kaitlin N. Smith,et al.  A Quantum Computational Compiler and Design Tool for Technology-Specific Targets , 2019, 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).

[35]  Moinuddin K. Qureshi,et al.  Ensemble of Diverse Mappings: Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mistakes , 2019, MICRO.

[36]  Chi Zhang,et al.  Time-optimal Qubit mapping , 2021, ASPLOS.

[37]  Robert R. Tucci An Introduction to Cartan's KAK Decomposition for QC Programmers , 2005, quant-ph/0507171.

[38]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[39]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.