Control of switched LPV systems using common Lyapunov function method and an F-16 aircraft application

This paper presents a controller design method for dealing with the induced ℒ2-norm problem for switched linear parameter-varying (LPV) systems. Considering the arbitrary switchings caused by the parameters varying, a common parameter-dependent Lyapunov function is employed to derive sufficient linear matrix inequality (LMI) conditions for the switched LPV systems. A family of LPV controllers are designed according to the LMI conditions, and each of them is suitable for the corresponding parameter region. The proposed switching LPV control method is applied to an F-16 aircraft longitudinal model and simulation results demonstrate the effectiveness of the approach.

[1]  P. L. Deal,et al.  Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability. [F-16] , 1979 .

[2]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[3]  Ricardo Salvador Sánchez Peña,et al.  LPV control of a 6-DOF vehicle , 2002, IEEE Trans. Control. Syst. Technol..

[4]  Fen Wu,et al.  Switching LPV control of an F-16 aircraft via controller state reset , 2006, IEEE Trans. Control. Syst. Technol..

[5]  Pramod P. Khargonekar,et al.  On the control of linear systems whose coefficients are functions of parameters , 1984 .

[6]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[7]  Keith Glover,et al.  Calibratable linear parameter-varying control of a turbocharged diesel engine , 2006, IEEE Transactions on Control Systems Technology.

[8]  Bei Lu,et al.  Switching LPV Control for High Performance Tactical Aircraft , 2004 .

[9]  Bin He,et al.  Robust LPV control of diesel auxiliary power unit for series hybrid electric vehicles , 2006, IEEE Transactions on Power Electronics.

[10]  L. Sonneveldt,et al.  Nonlinear F-16 Model Description , 2006 .

[11]  Masayoshi Tomizuka,et al.  Linear parameter varying controller for automated lane guidance experimental study on tractor semi-trailers , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[12]  Fen Wu,et al.  Switching LPV control designs using multiple parameter-dependent Lyapunov functions , 2004, Autom..

[13]  Vijay Vittal,et al.  Decentralized power system stabilizer design using linear parameter varying approach , 2004 .

[14]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[15]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[16]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[17]  Jonathan P. How,et al.  Modeling and H∞ control for switched linear parameter-varying missile autopilot , 2003, IEEE Trans. Control. Syst. Technol..

[18]  Fen Wu Switching LPV control design for magnetic bearing systems , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).

[19]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[20]  Jeff S. Shamma,et al.  Analysis and design of gain scheduled control systems , 1988 .

[21]  P. Apkarian,et al.  LPV techniques for control of an inverted pendulum , 1999, IEEE Control Systems.

[22]  Pierre Apkarian,et al.  Missile autopilot design via a multi‐channel LFT/LPV control method , 2002 .

[23]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .