The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy.

The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.

[1]  L. Johnston,et al.  The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. , 2002, Biophysical journal.

[2]  Daniel J Müller,et al.  Conformational changes in surface structures of isolated connexin 26 gap junctions , 2002, The EMBO journal.

[3]  G. Karp Cell and molecular biology : concepts and experiments / Gerald Karp , 1996 .

[4]  X. Fang,et al.  Single-molecule fluorescence imaging in living cells. , 2013, Annual review of physical chemistry.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  J. D. Robertson,et al.  The ultrastructure of cell membranes and their derivatives. , 1959, Biochemical Society symposium.

[7]  G. Nicolson,et al.  The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. , 2014, Biochimica et biophysica acta.

[8]  I. Rousso,et al.  Directly monitoring individual retrovirus budding events using atomic force microscopy. , 2008, Biophysical journal.

[9]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[10]  Hermann E Gaub,et al.  Force and function: probing proteins with AFM-based force spectroscopy. , 2009, Current opinion in structural biology.

[11]  Matthias Rief,et al.  Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy , 1997, Science.

[12]  Yang Gan,et al.  Atomic and subnanometer resolution in ambient conditions by atomic force microscopy , 2009 .

[13]  W. Häberle,et al.  AFM review study on pox viruses and living cells. , 1997, Biophysical journal.

[14]  Xin Shang,et al.  The force of transporting a single amino acid into the living cell measured using atomic force microscopy. , 2013, Chemical communications.

[15]  Mingjun Cai,et al.  High resolution imaging of mitochondrial membranes by in situ atomic force microscopy , 2013 .

[16]  L. Rajendran,et al.  Lipid rafts and membrane dynamics , 2005, Journal of Cell Science.

[17]  Anna Pietuch,et al.  Membrane tension homeostasis of epithelial cells through surface area regulation in response to osmotic stress. , 2013, Biochimica et biophysica acta.

[18]  F. Sjöstrand,et al.  The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. , 1958, Journal of ultrastructure research.

[19]  D. Engelman Membranes are more mosaic than fluid , 2005, Nature.

[20]  F. Kienberger,et al.  Multiple receptors involved in human rhinovirus attachment to live cells , 2008, Proceedings of the National Academy of Sciences.

[21]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[22]  A. Engel,et al.  Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. , 1999, Biophysical journal.

[23]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[24]  P. Sengupta,et al.  Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. , 2007, Seminars in cell & developmental biology.

[25]  Hiroyuki Noji,et al.  High-Speed Atomic Force Microscopy Reveals Rotary Catalysis of Rotorless F1-ATPase , 2011, Science.

[26]  E. Evans,et al.  Dynamic strength of molecular adhesion bonds. , 1997, Biophysical journal.

[27]  Shareen H. Doak,et al.  High-resolution imaging using a novel atomic force microscope and confocal laser scanning microscope hybrid instrument: essential sample preparation aspects , 2008, Histochemistry and Cell Biology.

[28]  D. Lohr,et al.  Single-molecule recognition imaging microscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Xin Shang,et al.  Size-dependent endocytosis of single gold nanoparticles. , 2011, Chemical communications.

[30]  K. Torimitsu,et al.  Direct Observation of ATP-Induced Conformational Changes in Single P2X4 Receptors , 2009, PLoS biology.

[31]  R. Epand,et al.  Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization. , 2006, Biophysical journal.

[32]  Sang-Joon Cho,et al.  Use of the unroofing technique for atomic force microscopic imaging of the intra-cellular cytoskeleton under aqueous conditions. , 2012, Journal of electron microscopy.

[33]  Jing Zhang,et al.  Nanoscale organization of human GnRH-R on human bladder cancer cells. , 2014, Analytical chemistry.

[34]  Ling Wang,et al.  Single-molecule force spectroscopy and imaging of the vancomycin/D-Ala-D-Ala interaction. , 2007, Nano letters.

[35]  Hongbin Ji,et al.  Regulation of EGFR nanocluster formation by ionic protein-lipid interaction , 2014, Cell Research.

[36]  Xin Shang,et al.  Direct evidence of lipid rafts by in situ atomic force microscopy. , 2012, Small.

[37]  H. Wada,et al.  Immune atomic force microscopy of prestin-transfected CHO cells using quantum dots , 2009, Pflügers Archiv - European Journal of Physiology.

[38]  G. Schütz,et al.  A combined optical and atomic force microscope for live cell investigations. , 2006, Ultramicroscopy.

[39]  K. Cole Surface forces of the Arbacia egg , 1932, Protoplasma.

[40]  K. Arnold,et al.  MALDI-TOF MS in lipidomics. , 2007, Frontiers in bioscience : a journal and virtual library.

[41]  H. P. Lu,et al.  Sizing up single-molecule enzymatic conformational dynamics. , 2014, Chemical Society reviews.

[42]  D. Müller,et al.  Single-molecule force spectroscopy of G-protein-coupled receptors. , 2013, Chemical Society reviews.

[43]  C. Lim,et al.  AFM indentation study of breast cancer cells. , 2008, Biochemical and biophysical research communications.

[44]  T. Stevens,et al.  Do more complex organisms have a greater proportion of membrane proteins in their genomes? , 2000, Proteins.

[45]  P. Kosuri,et al.  Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy , 2013, Nature Protocols.

[46]  Roessler,et al.  Mo , 1878, Angewandte Chemie.

[47]  H. Gaub,et al.  Force spectroscopy with single bio-molecules. , 2000, Current opinion in chemical biology.

[48]  H. Güntherodt,et al.  Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Pierre-Emmanuel Milhiet,et al.  Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. , 2012, Chemistry and physics of lipids.

[50]  C. Lenardi,et al.  Intermittent contact mode AFM investigation of native plasma membrane of Xenopus laevis oocyte , 2009, European Biophysics Journal.

[51]  W. Linke,et al.  S-Glutathionylation of Cryptic Cysteines Enhances Titin Elasticity by Blocking Protein Folding , 2014, Cell.

[52]  D. Bartel,et al.  Synthesizing life : Paths to unforeseeable science & technology , 2001 .

[53]  E. Gorter,et al.  ON BIMOLECULAR LAYERS OF LIPOIDS ON THE CHROMOCYTES OF THE BLOOD , 1925, The Journal of experimental medicine.

[54]  Petra Schwille,et al.  Probing Lipid Mobility of Raft-exhibiting Model Membranes by Fluorescence Correlation Spectroscopy* , 2003, Journal of Biological Chemistry.

[55]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[56]  A. Lascialfari,et al.  Atomic force microscopy imaging of lipid rafts of human breast cancer cells. , 2012, Biochimica et biophysica acta.

[57]  P. Sens,et al.  Two-chamber AFM: probing membrane proteins separating two aqueous compartments , 2006, Nature Methods.

[58]  Julio M Fernandez,et al.  Force-Clamp Spectroscopy Monitors the Folding Trajectory of a Single Protein , 2004, Science.

[59]  A. Shaw Lipid rafts: now you see them, now you don't , 2006, Nature Immunology.

[60]  M. Rossmann,et al.  Morphogenesis of Mimivirus and Its Viral Factories: an Atomic Force Microscopy Study of Infected Cells , 2013, Journal of Virology.

[61]  Hugh Davson,et al.  A contribution to the theory of permeability of thin films , 1935 .

[62]  Kai Simons,et al.  Lipid rafts and signal transduction , 2000, Nature Reviews Molecular Cell Biology.

[63]  Jilin Tang,et al.  Single molecular recognition force spectroscopy study of a luteinizing hormone-releasing hormone analogue as a carcinoma target drug. , 2012, The journal of physical chemistry. B.

[64]  Toshio Ando,et al.  Video imaging of walking myosin V by high-speed atomic force microscopy , 2010, Nature.

[65]  John A. Kiernan,et al.  Formaldehyde, Formalin, Paraformaldehyde And Glutaraldehyde: What They Are And What They Do , 2000, Microscopy Today.

[66]  M. Rief,et al.  Sequence-dependent mechanics of single DNA molecules , 1999, Nature Structural Biology.

[67]  Mingzhai Sun,et al.  The effect of cellular cholesterol on membrane-cytoskeleton adhesion , 2007, Journal of Cell Science.

[68]  A. Zhang,et al.  A new image correction method for live cell atomic force microscopy , 2007, Physics in medicine and biology.

[69]  Z. Surviladze,et al.  Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging. , 2006, Biophysical journal.

[70]  D. Müller,et al.  Substrate-induced changes in the structural properties of LacY , 2014, Proceedings of the National Academy of Sciences.

[71]  D. Lohr,et al.  Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. , 2002, Biophysical journal.

[72]  W. Rodgers,et al.  Clustering of Membrane Raft Proteins by the Actin Cytoskeleton* , 2007, Journal of Biological Chemistry.

[73]  M. Vassalli,et al.  Visualization of single proteins from stripped native cell membranes: A protocol for high‐resolution atomic force microscopy , 2013, Microscopy research and technique.

[74]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[75]  Mingjun Cai,et al.  Studying the membrane structure of chicken erythrocytes by in situ atomic force microscopy , 2014 .

[76]  S. Mongrand,et al.  Lipids of plant membrane rafts. , 2012, Progress in lipid research.

[77]  E. Orlova,et al.  Dynamic force microscopy imaging of native membranes. , 2003, Ultramicroscopy.

[78]  Mingjun Cai,et al.  Atomic Force Microscopy of Asymmetric Membranes from Turtle Erythrocytes , 2014, Molecules and cells.

[79]  Xin Shang,et al.  Locating the Band III protein in quasi-native cell membranes , 2010 .

[80]  Simon Scheuring,et al.  Biological AFM: where we come from – where we are – where we may go , 2011, Journal of molecular recognition : JMR.

[81]  W. Marsden I and J , 2012 .

[82]  Kai Simons,et al.  Revitalizing membrane rafts: new tools and insights , 2010, Nature Reviews Molecular Cell Biology.

[83]  Li Xu,et al.  Atomic force microscopy study of the effect of HER 2 antibody on EGF mediated ErbB ligand-receptor interaction. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[84]  H. Schillers Imaging CFTR in its native environment , 2008, Pflügers Archiv - European Journal of Physiology.

[85]  Khalid Hasan Tantawi,et al.  Porous silicon membrane for investigation of transmembrane proteins , 2013 .

[86]  Simon Scheuring,et al.  A hybrid high-speed atomic force–optical microscope for visualizing single membrane proteins on eukaryotic cells , 2013, Nature Communications.

[87]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[88]  T. Gomi,et al.  Imaging by Atomic Force Microscopy of the Plasma Membrane of Prestin-Transfected Chinese Hamster Ovary Cells , 2006, Journal of the Association for Research in Otolaryngology.

[89]  N. Jalili,et al.  A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences , 2004 .

[90]  P. Vandenabeele,et al.  Molecular mechanisms of necroptosis: an ordered cellular explosion , 2010, Nature Reviews Molecular Cell Biology.

[91]  D. Lohr,et al.  Using atomic force microscopy to study chromatin structure and nucleosome remodeling. , 2007, Methods.

[92]  Mingjun Cai,et al.  The asymmetric membrane structure of erythrocytes from Crucian carp studied by atomic force microscopy , 2014 .

[93]  Yves F. Dufrêne,et al.  Recent progress in cell surface nanoscopy: Light and force in the near-field , 2012 .

[94]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[95]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[96]  D. Müller,et al.  Multiparametric imaging of biological systems by force-distance curve–based AFM , 2013, Nature Methods.

[97]  L. Dougan,et al.  Single molecule force spectroscopy using polyproteins. , 2012, Chemical Society reviews.

[98]  R. Nussinov,et al.  Mechanisms for the Insertion of Toxic, Fibril-like β-Amyloid Oligomers into the Membrane. , 2013, Journal of chemical theory and computation.

[99]  Aleksandr Noy,et al.  Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment. , 2011, Current opinion in chemical biology.

[100]  K. El Kirat,et al.  Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy. , 2007, Biochimica et biophysica acta.

[101]  S. Scheuring,et al.  Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. , 2005, Biochimica et biophysica acta.

[102]  Neil Genzlinger A. and Q , 2006 .

[103]  Kai Simons,et al.  Model systems, lipid rafts, and cell membranes. , 2004, Annual review of biophysics and biomolecular structure.

[104]  T. Ando Molecular machines directly observed by high‐speed atomic force microscopy , 2013, FEBS letters.

[105]  H. Sitte,et al.  Probing Binding Pocket of Serotonin Transporter by Single Molecular Force Spectroscopy on Living Cells* , 2011, The Journal of Biological Chemistry.

[106]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[107]  Clemens M. Franz,et al.  Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics , 2008 .

[108]  F. Besenbacher,et al.  Quantitative biomolecular imaging by dynamic nanomechanical mapping. , 2014, Chemical Society reviews.

[109]  M. Steinmetz,et al.  Localizing chemical groups while imaging single native proteins by high-resolution atomic force microscopy. , 2014, Nano letters.

[110]  Aiko Yoshida,et al.  High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events , 2013, Scientific Reports.

[111]  Tomaso Zambelli,et al.  FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. , 2009, Nano letters.

[112]  Mingjun Cai,et al.  High-efficiency localization of Na(+)-K(+) ATPases on the cytoplasmic side by direct stochastic optical reconstruction microscopy. , 2013, Nanoscale.

[113]  B. de Kruijff,et al.  Blistering of langmuir-blodgett bilayers containing anionic phospholipids as observed by atomic force microscopy. , 1999, Biophysical journal.

[114]  Y. Dufrêne,et al.  Detection and localization of single molecular recognition events using atomic force microscopy , 2006, Nature Methods.

[115]  Toshio Ando,et al.  High-speed atomic force microscopy coming of age , 2012, Nanotechnology.

[116]  T. Lange,et al.  Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging , 2008, Nanotechnology.

[117]  Daniel J Müller,et al.  Atomic force microscopy and spectroscopy of native membrane proteins , 2007, Nature Protocols.

[118]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[119]  R. Lamb,et al.  Influenza virus assembly and budding. , 2011, Virology.

[120]  Gil U. Lee,et al.  Direct measurement of the forces between complementary strands of DNA. , 1994, Science.

[121]  Douglas J Taatjes,et al.  Atomic force microscopy: High resolution dynamic imaging of cellular and molecular structure in health and disease , 2013, Journal of cellular physiology.

[122]  R. Balaban,et al.  Role of mitochondrial Ca2+ in the regulation of cellular energetics. , 2012, Biochemistry.

[123]  P. Hinterdorfer,et al.  Simultaneous topography and recognition imaging on endothelial cells , 2011, Journal of molecular recognition : JMR.

[124]  Steven M Block,et al.  Reconstructing folding energy landscapes by single-molecule force spectroscopy. , 2014, Annual review of biophysics.

[125]  Petra Schwille,et al.  Fluorescence correlation spectroscopy relates rafts in model and native membranes. , 2004, Biophysical journal.

[126]  Qingkang Wang,et al.  Mechanical characterization of living and dead undifferentiated human adipose-derived stem cells by using atomic force microscopy , 2013, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[127]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[128]  Helmut Grubmüller,et al.  Influenza virus binds its host cell using multiple dynamic interactions , 2012, Proceedings of the National Academy of Sciences.

[129]  R. Weis,et al.  Periodic structures in lipid monolayer phase transitions. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[130]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[131]  K. El Kirat,et al.  Membrane resistance to Triton X-100 explored by real-time atomic force microscopy. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[132]  Andreas Engel,et al.  Structure and mechanics of membrane proteins. , 2008, Annual review of biochemistry.

[133]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[134]  Xing Zhang,et al.  3.3 Å Cryo-EM Structure of a Nonenveloped Virus Reveals a Priming Mechanism for Cell Entry , 2010, Cell.

[135]  Paul K. Hansma,et al.  Tapping mode atomic force microscopy in liquids , 1994 .

[136]  A. Varki,et al.  Biological roles of oligosaccharides: all of the theories are correct , 1993, Glycobiology.

[137]  Joan M. Lau,et al.  Lattice-like array particles on Xenopus oocyte plasma membrane. , 2002, Scanning.

[138]  S. Oiki,et al.  The Open Gate Structure of the Membrane-Embedded KcsA Potassium Channel Viewed From the Cytoplasmic Side , 2013, Scientific Reports.

[139]  Jelena Mandic,et al.  Chemomechanical mapping of ligand–receptor binding kinetics on cells , 2007, Proceedings of the National Academy of Sciences.

[140]  Xin Shang,et al.  Localization of Na+-K+ ATPases in quasi-native cell membranes. , 2009, Nano letters.

[141]  Mingjun Cai,et al.  Preparation of cell membranes for high resolution imaging by AFM. , 2010, Ultramicroscopy.

[142]  R. Tikkanen,et al.  Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. , 2004, The Biochemical journal.

[143]  Yves F Dufrêne,et al.  Atomic force microscopy and chemical force microscopy of microbial cells , 2008, Nature Protocols.

[144]  Pierre-François Lenne,et al.  Membrane microdomains: from seeing to understanding , 2014, Front. Plant Sci..

[145]  H Schindler,et al.  Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[146]  A. Kusumi,et al.  Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. , 1998, Biophysical journal.

[147]  Deborah A. Brown,et al.  Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface , 1992, Cell.

[148]  D. Fotiadis Atomic force microscopy for the study of membrane proteins. , 2012, Current opinion in biotechnology.

[149]  Ami Chand,et al.  Probing protein–protein interactions in real time , 2000, Nature Structural Biology.

[150]  Frauke Gräter,et al.  Probing the chemistry of thioredoxin catalysis with force , 2007, Nature.

[151]  Andrew G. Glen,et al.  APPL , 2001 .

[152]  Young Jae Song,et al.  Invited review article: A 10 mK scanning probe microscopy facility. , 2010, The Review of scientific instruments.

[153]  K. El Kirat,et al.  Atomic force microscopy of model lipid membranes , 2013, Analytical and Bioanalytical Chemistry.

[154]  Robert Fredriksson,et al.  Mapping the human membrane proteome : a majority of the human membrane proteins can be classified according to function and evolutionary origin , 2015 .

[155]  J. Sacchettini,et al.  Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. , 2001, Biochemistry.

[156]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[157]  Graça Raposo,et al.  Extracellular vesicles: Exosomes, microvesicles, and friends , 2013, The Journal of cell biology.

[158]  Xiaoxue Yu,et al.  AFM of the Ultrastructural and Mechanical Properties of Lipid-Raft-Disrupted and/or Cold-Treated Endothelial Cells , 2014, The Journal of Membrane Biology.

[159]  C. le Grimellec,et al.  Nanoscale topography of hepatitis B antigen particles by atomic force microscopy. , 2011, Biochimie.

[160]  P. Park,et al.  Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. , 2014, Biochimica et biophysica acta.

[161]  Mingjun Cai,et al.  Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches , 2014, PloS one.

[162]  M. Hayat Glutaraldehyde: Role in electron microscopy , 1986 .

[163]  Xin Shang,et al.  Recording force events of single quantum-dot endocytosis. , 2011, Chemical communications.

[164]  Mingjun Cai,et al.  The Asymmetrical Structure of Golgi Apparatus Membranes Revealed by In situ Atomic Force Microscope , 2013, PloS one.

[165]  Anna Pietuch,et al.  Elastic properties of cells in the context of confluent cell monolayers: impact of tension and surface area regulation , 2013 .