Propagation of the apoptotic signal by mitochondrial waves

Generation of mitochondrial signals is believed to be important in the commitment to apoptosis, but the mechanisms coordinating the output of individual mitochondria remain elusive. We show that in cardiac myotubes exposed to apoptotic agents, Ca2+ spikes initiate depolarization of mitochondria in discrete subcellular regions, and these mitochondria initiate slow waves of depolarization and Ca2+ release propagating through the cell. Traveling mitochondrial waves are prevented by Bcl‐xL, involve permeability transition pore (PTP) opening, and yield cytochrome c release, caspase activation and nuclear apoptosis. Mito chondrial Ca2+ uptake is critical for wave propagation, and mitochondria at the origin of waves take up Ca2+ particularly effectively, providing a mechanism that may underlie selection of the initiation sites. Thus, apoptotic agents transform the mitochondria into an excitable state by sensitizing PTP to Ca2+. Expansion of the local excitation by mitochondrial waves propagating through the whole cell can be especially important in activation of the apoptotic machinery in large cells.

[1]  L. Scorrano,et al.  Mitochondria and cell death. Mechanistic aspects and methodological issues. , 1999, European journal of biochemistry.

[2]  Y. Tsujimoto Mitochondria and Cell Death , 2000, Cell Death and Differentiation.

[3]  F. Di Virgilio,et al.  Reduced Loading of Intracellular Ca2+ Stores and Downregulation of Capacitative Ca2+Influx in Bcl-2–Overexpressing Cells , 2000, The Journal of cell biology.

[4]  G. Hajnóczky,et al.  Mitochondria Suppress Local Feedback Activation of Inositol 1,4,5-Trisphosphate Receptors by Ca2+ * , 1999, The Journal of Biological Chemistry.

[5]  P. Camacho,et al.  Ca2+ wave dispersion and spiral wave entrainment in Xenopus laevis oocytes overexpressing Ca2+ ATPases. , 1998, Biophysical Chemistry.

[6]  G. Kroemer,et al.  Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins , 1998, Oncogene.

[7]  Y. Tsujimoto,et al.  Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Clapham,et al.  Intracellular calcium waves. , 1995, Advances in second messenger and phosphoprotein research.

[9]  J. Martinou Apoptosis: Key to the mitochondrial gate , 1999, Nature.

[10]  J. Martinou,et al.  Mitochondria as the central control point of apoptosis. , 2000, Trends in cell biology.

[11]  E. Marbán,et al.  Subcellular metabolic transients and mitochondrial redox waves in heart cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Herrmann-Frank,et al.  Sarcoplasmic reticulum vesicles embedded in agarose gel exhibit propagating calcium waves , 1999, FEBS letters.

[13]  J. Mazat,et al.  Mitochondria Are Excitable Organelles Capable of Generating and Conveying Electrical and Calcium Signals , 1997, Cell.

[14]  C. Borner,et al.  Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  G. Kroemer,et al.  The mitochondrial death/life regulator in apoptosis and necrosis. , 1998, Annual review of physiology.

[16]  Shigeomi Shimizu,et al.  Bcl‐2 family: Life‐or‐death switch , 2000, FEBS letters.

[17]  Donald M. Bers,et al.  Excitation-Contraction Coupling and Cardiac Contractile Force , 2001, Developments in Cardiovascular Medicine.

[18]  J. Putney,et al.  Spatial and temporal aspects of cellular calcium signaling , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  S. Korsmeyer,et al.  BCL-2 family members and the mitochondria in apoptosis. , 1999, Genes & development.

[20]  R. Lutz,et al.  Bak BH3 Peptides Antagonize Bcl-xL Function and Induce Apoptosis through Cytochrome c-independent Activation of Caspases* , 1999, The Journal of Biological Chemistry.

[21]  Luca Scorrano,et al.  Mitochondria and cell death. Mechanistic aspects and methodological issues. , 1999, European journal of biochemistry.

[22]  György Hajnóczky,et al.  Decoding of cytosolic calcium oscillations in the mitochondria , 1995, Cell.

[23]  Guido Kroemer,et al.  Mitochondrial control of cell death , 2000, Nature Medicine.

[24]  James D. Lechleiter,et al.  Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes , 1995, Nature.

[25]  Gerard I. Evan,et al.  The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant , 2000, Nature Cell Biology.

[26]  Sandor Györke,et al.  The role of luminal Ca2+ in the generation of Ca2+ waves in rat ventricular myocytes , 1999, The Journal of physiology.

[27]  V. Valero,et al.  High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism , 1999, Nature Cell Biology.

[28]  T. Meyer Cell signalling by second messenger waves , 1991, Cell.

[29]  E. Wang,et al.  Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  E. Alnemri Hidden powers of the mitochondria , 1999, Nature Cell Biology.

[31]  G. Chinnadurai,et al.  Modulation of Mitochondrial Ca2+ Homeostasis by Bcl-2* , 1999, The Journal of Biological Chemistry.

[32]  Matthew G. Vander Heiden,et al.  Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? , 1999, Nature Cell Biology.

[33]  G. Hajnóczky,et al.  Calcium Signal Transmission between Ryanodine Receptors and Mitochondria* , 2000, The Journal of Biological Chemistry.

[34]  G. Hajnóczky,et al.  Quasi‐synaptic calcium signal transmission between endoplasmic reticulum and mitochondria , 1999, The EMBO journal.

[35]  Jianjie Ma,et al.  Mitochondrial Depolarization Accompanies Cytochrome cRelease During Apoptosis in PC6 Cells* , 1999, The Journal of Biological Chemistry.

[36]  M Crompton,et al.  The mitochondrial permeability transition pore and its role in cell death. , 1999, The Biochemical journal.

[37]  G. Hajnóczky,et al.  Apoptosis driven by IP3‐linked mitochondrial calcium signals , 1999, The EMBO journal.

[38]  M. Berridge The AM and FM of calcium signalling , 1997, Nature.

[39]  M. Madesh,et al.  The machinery of local Ca2+ signalling between sarco‐endoplasmic reticulum and mitochondria , 2000, The Journal of physiology.

[40]  Y Li,et al.  [Mitochondria and apoptosis]. , 2000, Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine].

[41]  John J. Lemasters,et al.  Mitochondrial Dysfunction in the Pathogenesis of Necrotic and Apoptotic Cell Death , 1999, Journal of bioenergetics and biomembranes.

[42]  J. Russell,et al.  Mitochondria Support Inositol 1,4,5-Trisphosphate-mediated Ca2+ Waves in Cultured Oligodendrocytes* , 1996, The Journal of Biological Chemistry.

[43]  Peter Lipp,et al.  Calcium - a life and death signal , 1998, Nature.

[44]  D Thomas,et al.  A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. , 2000, Cell calcium.

[45]  O. Petersen,et al.  Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate‐evoked local cytosolic Ca2+ signals , 1999, The EMBO journal.

[46]  Donald M. Bers,et al.  Excitation-Contraction Coupling and Cardiac Contractile Force , 1991, Developments in Cardiovascular Medicine.

[47]  S. Korsmeyer,et al.  Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c , 2000, Cell Death and Differentiation.

[48]  B. Zhivotovsky,et al.  All along the watchtower: on the regulation of apoptosis regulators , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.