暂无分享,去创建一个
[1] S. Myers,et al. Connections between differential geometry and topology II. Closed surfaces , 1936 .
[2] Michael A. Buchner,et al. Simplicial structure of the real analytic cut locus , 1977 .
[3] I. Chavel. Riemannian Geometry: Subject Index , 2006 .
[4] Dominique Attali,et al. Modeling noise for a better simplification of skeletons , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.
[5] Knud D. Andersen,et al. The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .
[6] A. Mennucci,et al. Hamilton—Jacobi Equations and Distance Functions on Riemannian Manifolds , 2002, math/0201296.
[7] Minoru Tanaka,et al. Loki: Software for Computing Cut Loci , 2002, Exp. Math..
[8] Jin-ichi Itoh,et al. Thaw: A Tool for Approximating Cut Loci on a Triangulation of a Surface , 2004, Exp. Math..
[9] F. Chazal,et al. The λ-medial axis , 2005 .
[10] A. Petrunin. Semiconcave Functions in Alexandrov???s Geometry , 2013, 1304.0292.
[11] Tamal K. Dey,et al. Cut locus and topology from surface point data , 2009, SCG '09.
[12] Alan Demlow,et al. Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..
[13] Jakob Andreas Bærentzen,et al. Cut Locus Construction Using Deformable Simplicial Complexes , 2011, 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering.
[14] Charles M. Elliott,et al. Finite element methods for surface PDEs* , 2013, Acta Numerica.
[15] Bernard Bonnard,et al. Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces , 2014 .
[16] Yong-Jin Liu. Semi-Continuity of Skeletons in Two-Manifold and Discrete Voronoi Approximation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[17] P. Albano. On the stability of the cut locus , 2016 .
[18] Iain Dunning,et al. JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..
[19] Edouard Oudet,et al. Cut Locus on Compact Manifolds and Uniform Semiconcavity Estimates for a Variational Inequality , 2020, Archive for Rational Mechanics and Analysis.
[20] GetFEM , 2020, ACM Transactions on Mathematical Software.