Feature-based locomotion controllers

This paper introduces an approach to control of physics-based characters based on high-level features of movement, such as center-of-mass, angular momentum, and end-effectors. Objective terms are used to control each feature, and are combined by a prioritization algorithm. We show how locomotion can be expressed in terms of a small number of features that control balance and end-effectors. This approach is used to build controllers for human balancing, standing jump, and walking. These controllers provide numerous benefits: human-like qualities such as arm-swing, heel-off, and hip-shoulder counter-rotation emerge automatically during walking; controllers are robust to changes in body parameters; control parameters and goals may be modified at run-time; control parameters apply to intuitive properties such as center-of-mass height; and controllers may be mapped onto entirely new bipeds with different topology and mass distribution, without modifications to the controller itself. No motion capture or off-line optimization process is used.

[1]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[2]  T. Yoshikawa,et al.  Task-Priority Based Redundancy Control of Robot Manipulators , 1987 .

[3]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[4]  S. Shankar Sastry,et al.  Dynamic control of redundant manipulators , 1989, J. Field Robotics.

[5]  David A. Winter,et al.  Biomechanics and Motor Control of Human Movement , 1990 .

[6]  Jessica K. Hodgins,et al.  Animation of dynamic legged locomotion , 1991, SIGGRAPH.

[7]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[8]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[9]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[10]  Jessica K. Hodgins,et al.  Adapting simulated behaviors for new characters , 1997, SIGGRAPH.

[11]  Atsuo Kawamura,et al.  Robust biped walking with active interaction control between foot and ground , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[12]  Jessica K. Hodgins,et al.  Simulating leaping, tumbling, landing and balancing humans , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[13]  Chee-Meng Chew,et al.  Virtual Model Control: An Intuitive Approach for Bipedal Locomotion , 2001, Int. J. Robotics Res..

[14]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[15]  Philippe Poignet,et al.  Moving horizon control for biped robots without reference trajectory , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[16]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[17]  Jessica K. Hodgins,et al.  Motion capture-driven simulations that hit and react , 2002, SCA '02.

[18]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[19]  Ronald Fedkiw,et al.  Nonconvex rigid bodies with stacking , 2003, ACM Trans. Graph..

[20]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[21]  A. Berthoz,et al.  Head stabilization during various locomotor tasks in humans , 2004, Experimental Brain Research.

[22]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[23]  Ronan Boulic,et al.  An inverse kinematics architecture enforcing an arbitrary number of strict priority levels , 2004, The Visual Computer.

[24]  Marko B. Popovic,et al.  Angular momentum regulation during human walking: biomechanics and control , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[25]  Michiel van de Panne,et al.  Synthesis of Controllers for Stylized Planar Bipedal Walking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[26]  Jovan Popovic,et al.  Interactive animation of dynamic manipulation , 2006, SCA '06.

[27]  Taku Komura,et al.  Stepping motion for a human-like character to maintain balance against large perturbations , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[28]  S. Collins,et al.  The advantages of a rolling foot in human walking , 2006, Journal of Experimental Biology.

[29]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[30]  Jovan Popovic,et al.  Multiobjective control with frictional contacts , 2007, SCA '07.

[31]  Kwang Won Sok,et al.  Simulating biped behaviors from human motion data , 2007, ACM Trans. Graph..

[32]  Oussama Khatib,et al.  Synthesis and control of whole-body behaviors in humanoid systems , 2007 .

[33]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[34]  David E. Orin,et al.  Centroidal Momentum Matrix of a humanoid robot: Structure and properties , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  Russ Tedrake,et al.  High-dimensional underactuated motion planning via task space control , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[37]  Jun Nakanishi,et al.  Operational Space Control: A Theoretical and Empirical Comparison , 2008, Int. J. Robotics Res..

[38]  Jovan Popovic,et al.  Simulation of Human Motion Data using Short‐Horizon Model‐Predictive Control , 2008, Comput. Graph. Forum.

[39]  Oussama Khatib,et al.  Continuous control law from unilateral constraints , 2008, 2008 IEEE International Conference on Robotics and Automation.

[40]  Marko B. Popovic,et al.  Angular momentum in human walking , 2008, Journal of Experimental Biology.

[41]  C. Karen Liu,et al.  Optimization-based interactive motion synthesis , 2009, ACM Trans. Graph..

[42]  Aaron Hertzmann,et al.  Prioritized optimization for task-space control , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  David J. Fleet,et al.  Optimizing walking controllers , 2009, ACM Trans. Graph..

[44]  Victor B. Zordan,et al.  Momentum control for balance , 2009, ACM Trans. Graph..

[45]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[46]  Pierre-Brice Wieber,et al.  Prioritizing linear equality and inequality systems: Application to local motion planning for redundant robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[47]  Aaron Hertzmann,et al.  Feature-based locomotion controllers , 2010, ACM Trans. Graph..

[48]  Martin de Lasa,et al.  Robust physics-based locomotion using low-dimensional planning , 2010, ACM Trans. Graph..