Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering

When collimated beams of low energy ions are used to bombard materials, the surface often develops a periodic pattern or “ripple” structure. Different types of patterns are observed to develop under different conditions, with characteristic features that depend on the substrate material, the ion beam parameters, and the processing conditions. Because the patterns develop spontaneously, without applying any external mask or template, their formation is the expression of a dynamic balance among fundamental surface kinetic processes, e.g., erosion of material from the surface, ion-induced defect creation, and defect-mediated evolution of the surface morphology. In recent years, a comprehensive picture of the different kinetic mechanisms that control the different types of patterns that form has begun to emerge. In this article, we provide a review of different mechanisms that have been proposed and how they fit together in terms of the kinetic regimes in which they dominate. These are grouped into regions of behavior dominated by the directionality of the ion beam, the crystallinity of the surface, the barriers to surface roughening, and nonlinear effects. In sections devoted to each type of behavior, we relate experimental observations of patterning in these regimes to predictions of continuum models and to computer simulations. A comparison between theory and experiment is used to highlight strengths and weaknesses in our understanding. We also discuss the patterning behavior that falls outside the scope of the current understanding and opportunities for advancement.

[1]  W. W. Mullins,et al.  Flattening of a Nearly Plane Solid Surface due to Capillarity , 1959 .

[2]  B. Poelsema,et al.  "Two-Layer" Behavior of the Pt(111) Surface during Low-EnergyAr+-Ion Sputtering at High Temperatures , 1984 .

[3]  S. Habenicht Morphology of graphite surfaces after ion-beam erosion , 2001 .

[4]  D. Goswami,et al.  Nanoscale self-affine surface smoothing by ion bombardment , 2002, cond-mat/0212563.

[5]  F. Frost,et al.  Roughness evolution of ion sputtered rotating InP surfaces: pattern formation and scaling laws. , 2000, Physical review letters.

[6]  F. Frost,et al.  Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: Experiment and theory , 2005 .

[7]  S. van Dijken,et al.  Kinetic physical etching for versatile novel design of well ordered self-affine nanogrooves. , 2001, Physical review letters.

[8]  Albert-L'aszl'o Barab'asi,et al.  Morphology of ion-sputtered surfaces , 2000, cond-mat/0007354.

[9]  P. Sigmund A mechanism of surface micro-roughening by ion bombardment , 1973 .

[10]  S. Heun,et al.  The initial stages of epitaxial growth of silicon on Si(100)−2 × 1 , 1991 .

[11]  D. Cahill,et al.  Surface defects created by 20 keV Xe ion irradiation of Ge(1 1 1) , 2005 .

[12]  P. Broekmann,et al.  Step edge selection during ion erosion of Cu(001). , 2002, Physical review letters.

[13]  R. Averback,et al.  Effect of viscous flow on ion damage near solid surfaces. , 1994, Physical review letters.

[14]  P. Alkemade Propulsion of ripples on glass by ion bombardment. , 2006, Physical review letters.

[15]  Kurz,et al.  Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering. , 1999, Science.

[16]  Isao Yamada,et al.  Molecular dynamics simulation of cluster ion bombardment of solid surfaces , 1995 .

[17]  I. Yamada,et al.  Incident angle dependence of the sputtering effect of Ar-cluster-ion bombardment , 1997 .

[18]  J. D. Brock,et al.  X-Ray Scattering Study of the Surface Morphology of Au(111) during Ar + Ion Irradiation , 1998 .

[19]  J. Tersoff,et al.  Critical island size for layer-by-layer growth. , 1994, Physical review letters.

[20]  Stanley,et al.  Stochastic model for surface erosion via ion sputtering: Dynamical evolution from ripple morphology to rough morphology. , 1995, Physical review letters.

[21]  R. Ferrando,et al.  Jumps and concerted moves in Cu, Ag, and Au(110) adatom self-diffusion , 1999 .

[22]  Teichert,et al.  Nuclei of the Pt(111) network reconstruction created by single ion impacts. , 1994, Physical review letters.

[23]  Propagation of ripples in Monte Carlo models of sputter-induced surface morphology , 2004, cond-mat/0405363.

[24]  W. Jäger,et al.  Defect-cluster formation in high-energy-density cascades in gold , 1988 .

[25]  James W. Evans,et al.  Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds , 2006 .

[26]  A. J. Howard,et al.  Roughening instability and ion‐induced viscous relaxation of SiO2 surfaces , 1994 .

[27]  R. Averback,et al.  Surface smoothing of rough amorphous films by irradiation-induced viscous flow. , 2001, Physical review letters.

[28]  Ripples and Ripples: from Sandy Deserts to Ion-Sputtered Surfaces , 2003, cond-mat/0408452.

[29]  D. Adams,et al.  Focused ion beam milling of diamond: Effects of H2O on yield, surface morphology and microstructure , 2003 .

[30]  P. Alkemade,et al.  Flux dependence of oxygen-beam-induced ripple growth on silicon , 2001 .

[31]  Klitsner,et al.  Surface reconstruction in layer-by-layer sputtering of Si(111). , 1991, Physical review. B, Condensed matter.

[32]  D. Hirsch,et al.  Evolution of surface topography of fused silica by ion beam sputtering , 2001 .

[33]  D. Cahill,et al.  Surface morphology of Ge(111) during etching by keV ions , 2003 .

[34]  C. Boragno,et al.  Self-organized formation of rhomboidal nanopyramids on fcc(110) metal surfaces. , 2004, Physical review letters.

[35]  I. Koponen,et al.  Simulations of Ripple Formation on Ion-Bombarded Solid Surfaces , 1997 .

[36]  M. Caturla,et al.  Defect production in collision cascades in elemental semiconductors and fcc metals , 1998 .

[37]  W. Bolse Ion-beam induced atomic transport through bi-layer interfaces of low- and medium-Z metals and their nitrides , 1994 .

[38]  A. Cacciato,et al.  MeV ion irradiation‐induced creation and relaxation of mechanical stress in silica , 1995 .

[39]  A. Wieck,et al.  Ripple propagation and velocity dispersion on ion-beam-eroded silicon surfaces , 2002 .

[40]  James P. Sethna,et al.  Simulations of energetic beam deposition: From picoseconds to seconds , 1998 .

[41]  H. Urbassek,et al.  Step edge sputtering yield at grazing incidence ion bombardment. , 2004, Physical review letters.

[42]  Tsao,et al.  Layer-by-layer sputtering and epitaxy of Si(100). , 1991, Physical review letters.

[43]  Yang-Tse Cheng Thermodynamic and fractal geometric aspects of ion-solid interactions , 1990 .

[44]  J. Blakely,et al.  Lateral Templating for Guided Self‐Organization of Sputter Morphologies , 2005 .

[45]  Michely,et al.  Generation and nucleation of adatoms during ion bombardment of Pt(111). , 1991, Physical review. B, Condensed matter.

[46]  K. Reichelt,et al.  Nucleation and growth of thin films , 1988 .

[47]  J. D. Brock,et al.  Ion-induced pattern formation on Co surfaces: An x-ray scattering and kinetic Monte Carlo study , 2002 .

[48]  Monte Carlo simulations of ion-enhanced island coarsening , 1997 .

[49]  A. Audouard,et al.  Atomic displacements and atomic motion induced by electronic excitation in heavy-ion-irradiated amorphous metallic alloys , 1993 .

[50]  J. Malherbe Bombardment-induced ripple topography on GaAs and InP , 2003 .

[51]  T. Michely,et al.  Mechanisms of pit coarsening in ion erosion of fcc(111) surfaces: a kinetic 3D lattice Monte-Carlo study , 2001 .

[52]  D. Adams,et al.  Morphology evolution on diamond surfaces during ion sputtering , 2005 .

[53]  M. Sanyal,et al.  Evolution of surface morphology of ion sputtered GaAs(1 0 0) , 2002 .

[54]  M. Sinclair,et al.  Nonlinear amplitude evolution during spontaneous patterning of ion-bombarded Si(001) , 2000 .

[55]  G. Carter,et al.  TOPICAL REVIEW: The physics and applications of ion beam erosion , 2001 .

[56]  S. T. Picraux,et al.  Defect production and recombination during low-energy ion processing , 1995 .

[57]  J. Erlebacher,et al.  Transient topographies of ion patterned Si(111). , 2005, Physical review letters.

[58]  P. Claudin,et al.  Aeolian sand ripples: experimental study of fully developed states. , 2005, Physical Review Letters.

[59]  F. Frost,et al.  The shape and ordering of self-organized nanostructures by ion sputtering , 2004 .

[60]  Mario Castro,et al.  Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering. , 2006, Physical review letters.

[61]  Alain Marty,et al.  Instabilities in crystal growth by atomic or molecular beams , 2000 .

[62]  O. A. Urquidez,et al.  Shocks in Ion Sputtering Sharpen Steep Surface Features , 2005, Science.

[63]  Mark E. Law,et al.  Ion beams in silicon processing and characterization , 1997 .

[64]  C. Boragno,et al.  Is ion sputtering always a "negative homoepitaxial deposition"? , 2001, Physical review letters.

[65]  W. Chan,et al.  Sputter ripples and radiation-enhanced surface kinetics on Cu(001) , 2005 .

[66]  J. A. Sánchez-García,et al.  Temperature influence on the production of nanodot patterns by ion beam sputtering of Si(001) , 2006 .

[67]  R. Kree,et al.  Morphological regions and oblique-incidence dot formation in a model of surface sputtering , 2005, cond-mat/0512590.

[68]  Vacancy diffusion in the Cu(001) surface I : An STM study , 2001, cond-mat/0110656.

[69]  M. Nastasi,et al.  Ion beam mixing in metallic and semiconductor materials , 1994 .

[70]  A. Quinn,et al.  Morphology of sputtering damage on Cu(111) studied by scanning tunneling microscopy , 1997 .

[71]  Marco Paniconi,et al.  STATIONARY, DYNAMICAL, AND CHAOTIC STATES OF THE TWO-DIMENSIONAL DAMPED KURAMOTO-SIVASHINSKY EQUATION , 1997 .

[72]  Isao Yamada,et al.  Materials Processing by Gas Cluster Ion Beams , 2001 .

[73]  M. Murty,et al.  Influence of step edge diffusion on surface morphology during epitaxy , 2003 .

[74]  M. Murty,et al.  Surface smoothing during sputtering : Mobile vacancies versus adatom detachment and diffusion , 1998 .

[75]  H. C. Kang,et al.  Dynamical scaling of sputter-roughened surfaces in 2+1 dimensions. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  S. Maclaren,et al.  Surface roughness development during sputtering of GaAs and InP: Evidence for the role of surface diffusion in ripple formation and sputter cone development , 1992 .

[77]  S. E. Orchard On surface levelling in viscous liquids and gels , 1963 .

[78]  Teichert,et al.  Adatom yields, sputtering yields, and damage patterns of single-ion impacts on Pt(111). , 1994, Physical review. B, Condensed matter.

[79]  K. Wittmaack Surface and depth analysis based on sputtering , 1991 .

[80]  Production of ordered silicon nanocrystals by low-energy ion sputtering , 2001, cond-mat/0106542.

[81]  R. Kree,et al.  Long-time effects in a simulation model of sputter erosion , 2001, cond-mat/0107268.

[82]  W. Chan,et al.  Kinetic mechanisms in ion-induced ripple formation on Cu(001) surfaces , 2006 .

[83]  Gwo-Ching Wang,et al.  Roughness evolution of Si(111) by low-energy ion bombardment , 1998 .

[84]  C. Boragno,et al.  Temperature evolution of nanostructures induced by Ar+ sputtering on Ag(001) , 1998 .

[85]  K. Wittmaack Reliability of a popular simulation code for predicting sputtering yields of solids and ranges of low-energy ions , 2004 .

[86]  J. Diehl,et al.  The penetration of lattice defects in copper and gold foils bombarded with 1–5 keV argon ions , 1968 .

[87]  Tsai,et al.  Random and ordered defects on ion-bombarded Si(100)-(2 x 1) surfaces. , 1992, Physical review letters.

[88]  Self-organized ordering of nanostructures produced by ion-beam sputtering. , 2005, Physical review letters.

[89]  S. T. Picraux,et al.  Surface defect production on Ge(001) during low-energy ion bombardment , 1995 .

[90]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[91]  K. Prince,et al.  Inverse growth kinetics on InSb(110) , 1995 .

[92]  Eklund,et al.  Submicron-scale surface roughening induced by ion bombardment. , 1991, Physical review letters.

[93]  Temperature dependence of rippled corrugations induced on the Rh(1 1 0) surface via ion sputtering , 2005 .

[94]  P. Bedrossian Generation and healing of low-energy ion-induced defects on Si(100)-2×1 , 1994 .

[95]  C. Boragno,et al.  Ripple Wave Vector Rotation in Anisotropic Crystal Sputtering , 1998 .

[96]  C. Teichert,et al.  Step formation on the ion-bombarded Ag(100) surface studied by LEED and Monte Carlo simulations† , 1994 .

[97]  F. Frost,et al.  Importance of ion beam parameters on self-organized pattern formation on semiconductor surfaces by ion beam erosion , 2004 .

[98]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[99]  Energy dependent wavelength of the ion induced nanoscale ripple , 2002, cond-mat/0206272.

[100]  J. C. Hamilton,et al.  Surface Self-Diffusion by Vacancy Motion: Island Ripening on Cu(001) , 1997 .

[101]  Donnelly,et al.  Plastic Flow Induced by Single Ion Impacts on Gold. , 1996, Physical review letters.

[102]  H. Johnson,et al.  Structural and sputtering effects of medium energy ion bombardment of silicon , 2004 .

[103]  J. Matsuo,et al.  Study of Ar cluster ion bombardment of a sapphire surface , 1997 .

[104]  H. Urbassek,et al.  Effect of surface steps on sputtering and surface defect formation: molecular-dynamics study of 5 keV Xe+ bombardment of Pt(1 1 1) at glancing incidence angles , 2003 .

[105]  Laurent J. Lewis,et al.  Self-diffusion of adatoms, dimers, and vacancies on Cu(100) , 1997 .

[106]  Formation and annihilation of nanocavities during keV ion irradiation of Ge , 2003, cond-mat/0307581.

[107]  A. Woll,et al.  Persistent layer-by-layer sputtering of Au(111) , 2000 .

[108]  Jianjun Luo,et al.  On the role of ion flux in nanostructuring by ion sputter erosion , 2005 .

[109]  Yang,et al.  Anomalous dynamic scaling on the ion-sputtered Si(111) surface. , 1994, Physical Review B (Condensed Matter).

[110]  Barabási,et al.  Dynamic scaling of ion-sputtered surfaces. , 1995, Physical review letters.

[111]  Meier,et al.  Ion-beam-induced surface instability of glassy Fe40Ni40B20. , 1995, Physical review letters.

[112]  H. Kurz,et al.  Energy dependence of quantum dot formation by ion sputtering , 2001 .

[113]  R. Ferrando,et al.  Collective and single particle diffusion on surfaces , 2002 .

[114]  R. Behrisch,et al.  Sputtering by Particle Bombardment III , 1981 .

[115]  Quantum Dot and Hole Formation in Sputter Erosion , 2000, cond-mat/0008111.

[116]  Kee-Chul Chang,et al.  Spontaneous Nanoscale Corrugation of Ion-Eroded SiO2 , 2001 .

[117]  B. Poelsema,et al.  Electron density contour smoothening for epitaxial Ag islands on Ag(100) , 1995 .

[118]  Tamás Vicsek,et al.  Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model , 1985 .

[119]  R. Averback,et al.  Mechanisms of radiation-induced viscous flow: role of point defects. , 2003, Physical review letters.

[120]  Raja Nassar,et al.  Focused ion beam milling: Depth control for three-dimensional microfabrication , 1997 .

[121]  S. Dew,et al.  Self-organized Cu nanowires on glass and Si substrates from sputter etching Cu/substrate interfaces , 2006 .

[122]  F. Fabre,et al.  Growth of Cu on Cu(100) , 1992 .

[123]  T. Michely,et al.  Temperature dependent morphological evolution of Pt(111) by ion erosion: destabilization, phase coexistence and coarsening , 2001 .

[124]  F. Mongeot,et al.  Nanostructuring surfaces by ion sputtering , 2002 .

[125]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[126]  Albert-Laszlo Barabasi,et al.  Ion-induced effective surface diffusion in ion sputtering , 1997, cond-mat/9701116.

[127]  Richard L. Schwoebel,et al.  Step Motion on Crystal Surfaces. II , 1966 .

[128]  F. Frost,et al.  Pattern transitions on Ge surfaces during low-energy ion beam erosion , 2006 .

[129]  M. Sinclair,et al.  Dynamics of pattern formation during low-energy ion bombardment of Si(0 0 1) , 2001 .

[130]  K. Wittmaack Analytical description of the sputtering yields of silicon bombarded with normally incident ions , 2003 .

[131]  D. Cahill,et al.  Surface defects created by low energy (20 < E < 240 eV) ion bombardment of Ge(001) , 1997 .

[132]  Schumacher,et al.  Dimensional changes of metallic glasses during bombardment with fast heavy ions. , 1990, Physical review. B, Condensed matter.

[133]  F. Mongeot,et al.  Periodic structures induced by normal-incidence sputtering on Ag(110) and Ag(001): flux and temperature dependence , 2001 .

[134]  P. Stoltze Simulation of surface defects , 1994 .

[135]  U. Littmark,et al.  Momentum deposition by heavy-ion bombardment and an application to sputtering , 1975 .

[136]  D. Cahill Morphological instabilities in thin-film growth and etching , 2003 .

[137]  E. Chason,et al.  Effect of step edge transition rates and anisotropy in simulations of epitaxial growth , 1991 .

[138]  Ming Lu,et al.  Nanopatterning of Si(110) surface by ion sputtering: An experimental and simulation study , 2005 .

[139]  M. Batzill,et al.  Preparation by glancing incidence ion irradiation of surfaces with ångstrom-scale RMS roughness , 1997 .

[140]  Mayer,et al.  Roughening instability and evolution of the Ge(001) surface during ion sputtering. , 1994, Physical review letters.

[141]  G. Bracco,et al.  Anisotropic self-diffusion on Ag(110) , 2002 .

[142]  J. Venables,et al.  Nucleation and growth of thin films , 1984 .

[143]  D. Cahill,et al.  Surface damage produced by 20 keV Ga bombardment of Ge(001) , 1995 .

[144]  W. Primak Radiation‐Induced Stress Relaxation in Quartz and Vitreous Silica , 1964 .

[145]  Y. Samson,et al.  STM study of the nucleation and annealing of ion bombardment induced defects on Cu(100) , 1994 .

[146]  H. Kurz,et al.  Temporal evolution of dot patterns during ion sputtering , 2003 .

[147]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[148]  F. Frost,et al.  Highly ordered self-organized dot patterns on Si surfaces by low-energy ion-beam erosion , 2005 .

[149]  P. Sigmund Sputtering by ion bombardment theoretical concepts , 1981 .

[150]  Amar,et al.  Numerical solution of a continuum equation for interface growth in 2+1 dimensions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[151]  A. Toma,et al.  Ion beam erosion of amorphous materials: evolution of surface morphology , 2005 .

[152]  D. Seidman,et al.  Atomic resolution study of displacement cascades in ion‐irradiated platinum , 1986 .

[153]  Koponen,et al.  Simulations of submicrometer-scale roughening on ion-bombarded solid surfaces. , 1996, Physical review. B, Condensed matter.

[154]  J. Villain,et al.  Kinetic Coefficients in a System Far from Equilibrium , 1997 .

[155]  Leonardo Golubović,et al.  Epitaxial growth and erosion on (001) crystal surfaces: Far-from-equilibrium transitions, intermediary states, and vertical asymmetry , 2004 .

[156]  Ellen D. Williams,et al.  Steps on surfaces: experiment and theory , 1999 .

[157]  Y. Bruynseraede,et al.  Scanning tunneling microscopy observation of self-affine fractal roughness in ion-bombarded film surfaces. , 1993, Physical review letters.

[158]  K. Nordlund,et al.  Structural investigation of keV Ar-ion-induced surface ripples in Si by cross-sectional transmission electron microscopy , 2003 .

[159]  F. Frost,et al.  Ion beam assisted smoothing of optical surfaces , 2004 .

[160]  V. Ji,et al.  Atomistic simulation of point defects at low-index surfaces of noble metals , 2006 .

[161]  Joachim Krug,et al.  Island nucleation in the presence of step-edge barriers: Theory and applications , 1999, cond-mat/9912410.

[162]  P. Karmakar,et al.  Nanoscale periodic and faceted structures formation on Si(1 0 0) by oblique angle oxygen ion sputtering , 2005 .

[163]  C. Boragno,et al.  Scaling Laws of the Ripple Morphology on Cu(110) , 1998 .

[164]  Toh-Ming Lu,et al.  Numerical analysis of the noisy Kuramoto-Sivashinsky equation in 2+1 dimensions , 1999 .

[165]  D. Cahill,et al.  Surface Defects and Bulk Defect Migration Produced by Ion Bombardment of Si(001) , 1999 .

[166]  Procaccia,et al.  Comparison of the scale invariant solutions of the Kuramoto-Sivashinsky and Kardar-Parisi-Zhang equations in d dimensions. , 1992, Physical review letters.

[167]  Wolf,et al.  Kinetic roughening of vicinal surfaces. , 1991, Physical review letters.

[168]  M. Sinclair,et al.  Spontaneous Pattern Formation on Ion Bombarded Si(001) , 1999 .

[169]  R. Kree,et al.  Influence of collision cascade statistics on pattern formation of ion-sputtered surfaces , 2005 .

[170]  H. Urbassek,et al.  Adatom formation and atomic layer growth on Al(1 1 1) by ion bombardment: experiments and molecular dynamics simulations , 2001 .

[171]  Kunkel,et al.  Reentrant layer-by-layer growth during molecular-beam epitaxy of metal-on-metal substrates. , 1990, Physical review letters.

[172]  Power laws in surface physics: the deep, the shallow and the useful , 2004, cond-mat/0403267.

[173]  D. Datta,et al.  Spatial distribution of Ar on the Ar-ion-induced rippled surface of Si , 2005 .

[174]  Cahill,et al.  Surface morphology of Ge(001) during etching by low-energy ions. , 1995, Physical review. B, Condensed matter.

[175]  J. H. Weaver,et al.  Trends in surface roughening: analysis of ion-sputtered GaAs(110) , 1996 .

[176]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[177]  J. H. Weaver,et al.  Ion sputtering of GaAs(110): From individual bombardment events to multilayer removal , 1995 .

[178]  A model for ripple instabilities in granular media , 1998, cond-mat/9801295.

[179]  C. Boragno,et al.  Ripple Structure on Ag(110) Surface Induced by Ion Sputtering , 1997 .

[180]  J. Krug,et al.  Islands, mounds and atoms : patterns and processes in crystal growth far from equilibrium , 2004 .

[181]  B. Kahng,et al.  Morphological evolution of ion-sputtered Pd(001) : Temperature effects , 2006 .

[182]  Jayaprakash,et al.  Universal properties of the two-dimensional Kuramoto-Sivashinsky equation. , 1993, Physical review letters.

[183]  J. Villain,et al.  Physics of crystal growth , 1998 .

[184]  K. Lieb,et al.  NANOMETER RIPPLE FORMATION AND SELF-AFFINE ROUGHENING OF ION-BEAM-ERODED GRAPHITE SURFACES , 1999 .

[185]  W. Chan,et al.  Kinetics of ion-induced ripple formation on Cu(001) surfaces , 2004 .

[186]  F. Frost,et al.  Nanostructuring of solid surfaces by ion-beam erosion , 2003 .

[187]  M. Farle,et al.  Nanostructuring of the Cu(001) surface by ion bombardment: a STM study , 1996 .

[188]  R. Doty,et al.  Influence of O+2 energy, flux, and fluence on the formation and growth of sputtering‐induced ripple topography on silicon , 1996 .

[189]  G. Carter,et al.  Heavy ion sputtering induced surface topography development , 1983 .

[190]  M. Canepa,et al.  Tuning the magnetic anisotropy of ultrathin Fe∕Ag(001) films from biaxial to uniaxial by ion sculpting , 2006 .

[191]  R. Averback,et al.  Displacement damage in irradiated metals and semiconductors , 1997 .

[192]  Das Sarma S,et al.  Solid-on-solid rules and models for nonequilibrium growth in 2+1 dimensions. , 1992, Physical review letters.

[193]  R. Williams,et al.  Correlation from randomness: quantitative analysis of ion-etched graphite surfaces using the scanning tunneling microscope , 1993 .

[194]  Jon Orloff,et al.  High‐resolution focused ion beams , 1993 .

[195]  G. Betz,et al.  Sputtering by particle bombardment , 1983 .

[196]  Carter,et al.  Roughening and ripple instabilities on ion-bombarded Si. , 1996, Physical review. B, Condensed matter.

[197]  I. Yamada,et al.  Surface processing with ionized cluster beams: computer simulation , 1999 .

[198]  R. M. Bradley,et al.  Theory of ripple topography induced by ion bombardment , 1988 .

[199]  D. Moldovan,et al.  Epitaxial growth and erosion on (110) crystal surfaces: structure and dynamics of interfacial States. , 2002, Physical review letters.

[200]  Kinetic roughening of ion-sputtered Pd(001) surface: beyond the Kuramoto-Sivashinsky model. , 2003, Physical review letters.

[201]  James P. Sethna,et al.  Kinetic Monte Carlo-molecular dynamics investigations of hyperthermal copper deposition on Cu(111) , 2002 .

[202]  Nanostructure formation during ion-assisted growth of GaN by molecular beam epitaxy , 2005 .

[203]  Salmerón,et al.  He scattering study of the nucleation and growth of Cu(100) from its vapor. , 1985, Physical review. B, Condensed matter.

[204]  W. Jäger,et al.  Direct observation of spike effects in heavy-ion sputtering , 1981 .

[205]  K. Chang,et al.  Spontaneous nanoscale corrugation of ion-eroded SiO2: the role of ion-irradiation-enhanced viscous flow. , 2001, Physical review letters.

[206]  D. Seidman The study of radiation damage in metals with the field-ion and atom-probe microscopes☆ , 1978 .

[207]  Dynamics of Ripple Formation in Sputter Erosion: Nonlinear Phenomena , 1999, cond-mat/9905328.

[208]  W. Chan,et al.  Kinetic Monte Carlo simulations of ion-induced ripple formation: Dependence on flux, temperature, and defect concentration in the linear regime , 2006 .

[209]  Politi,et al.  Ehrlich-Schwoebel instability in molecular-beam epitaxy: A minimal model. , 1996, Physical review. B, Condensed matter.

[210]  J. Villain Continuum models of crystal growth from atomic beams with and without desorption , 1991 .

[211]  Maria R. D'Orsogna,et al.  The Kink Ehrlich-Schwoebel Effect and Resulting Instabilities , 1999 .

[212]  F. Borgatti,et al.  Time evolution of the local slope during Cu(110) ion sputtering , 2003 .

[213]  H. Kurz,et al.  Dissipative continuum model for self-organized pattern formation during ion-beam erosion , 2004 .

[214]  D. Siddons,et al.  Real-time x-ray studies of Mo-seeded Si nanodot formation during ion bombardment , 2005 .

[215]  E. Cirlin Auger electron spectroscopy and secondary ion mass spectrometry depth profiling with sample rotation , 1992 .

[216]  Cates,et al.  Hysteresis and metastability in a continuum sandpile model. , 1995, Physical review letters.

[217]  H. Urbassek,et al.  Mechanisms of pattern formation in grazing-incidence ion bombardment of Pt(111) , 2006 .

[218]  P. Chi,et al.  Secondary ion yield changes in Si and GaAs due to topography changes during O+2 or Cs+ ion bombardment , 1988 .

[219]  M. Tringides Surface diffusion : atomistic and collective processes , 1997 .

[220]  Cynthia A. Volkert,et al.  Stress and plastic flow in silicon during amorphization by ion bombardment , 1991 .

[221]  Yuh-Renn Wu,et al.  Real-time observation of ripple structure formation on a diamond surface under focused ion-beam bombardment , 2001 .

[222]  I. Yamada,et al.  Surface modification with gas cluster ion beams , 1993 .

[223]  Jonah Erlebacher,et al.  Temperature and fluence effects on the evolution of regular surface morphologies on ion-sputtered Si(111) , 2005 .

[224]  F. Mongeot,et al.  Interfacial dynamics of the rhomboidal pyramid pattern on ion-eroded Cu(110) , 2006 .

[225]  F. Ludwig,et al.  Si(100) surface morphology evolution during normal-incidence sputtering with 100–500 eV Ar+ ions , 2002 .

[226]  C. Teichert,et al.  How do nanoislands induced by ion suputtering evolve during the early stage of growth , 2004 .

[227]  Krug,et al.  Dynamic scaling and crossover analysis for the Kuramoto-Sivashinsky equation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[228]  P. Petroff,et al.  DIRECT OBSERVATION OF LONG‐RANGE MIGRATION OF SELF‐INTERSTITIAL ATOMS IN STAGE I OF IRRADIATED PLATINUM , 1971 .

[229]  A. Ishitani,et al.  A study of the secondary‐ion yield change on the GaAs surface caused by the O+2 ion‐beam‐induced rippling , 1991 .