Phobos: Regolith and ejecta blocks investigated with Mars Orbiter Camera images

Four flybys of Phobos by the Mars Global Surveyor spacecraft in 1998 allowed imaging at resolutions (∼2–7 m) better than obtained for any other satellite or asteroid except Earth's Moon. The images show the interior and vicinity of the large crater Stickney. There are ∼2000 identifiable ejecta blocks, the largest about 85 m across. The great majority of these blocks come from Stickney as part of low-velocity ejecta spread eastward by the influence of Phobos's rapid rotation. They appear to have experienced only a few meters, at most, of burial or modification since emplacement. The images also show materials of different albedos within Stickney that mark downslope motion of regolith. The number of craters on the steep slopes of Stickney that are subject to the downslope motion suggests that 4 km) have been degraded to the point that they are no longer recognizable.

[1]  Peter C. Thomas,et al.  Gravity, Tides, and Topography on Small Satellites and Asteroids: Application to Surface Features of the Martian Satellites , 1993 .

[2]  S. Croft Proteus: Geology, shape, and catastrophic destruction , 1992 .

[3]  H. Melosh,et al.  Drainage pits in cohesionless materials: implications for surface of Phobos. , 1989, Journal of geophysical research.

[4]  W. Hartmann Surface evolution of two-component stone/ice bodies in the Jupiter region , 1980 .

[5]  H. Melosh,et al.  The Stickney Impact of Phobos: A Dynamical Model , 1990 .

[6]  H. J. Moore,et al.  Standard techniques for presentation and analysis of crater size-frequency data , 1978 .

[7]  H. Melosh,et al.  Impact Craters on Asteroids: Does Gravity or Strength Control Their Size? , 1996 .

[8]  M. Malin,et al.  Mars Observer camera , 1992 .

[9]  Scott L. Murchie,et al.  Color Heterogeneity of the Surface of Phobos' Relationships to Geologic Features and Comparison to Meteorite Analogs , 1991 .

[10]  Verne R. Oberbeck,et al.  Thickness determinations of the lunar surface layer from lunar impact craters. , 1968 .

[11]  L. Soderblom A model for small‐impact erosion applied to the lunar surface , 1970 .

[12]  D. J. Milton,et al.  Mariner 9 television observations of Phobos and Deimos , 1972 .

[13]  R. Greeley,et al.  Ejecta Blocks on 243 Ida and on Other Asteroids , 1996 .

[14]  J. Head,et al.  Dynamics of Groove Formation on Phobos by Ejecta from Stickney Crater: Predictions and Tests , 1989 .

[15]  J. Veverka,et al.  The generation and use of numerical shape models for irregular Solar System objects , 1993 .

[16]  M. H. Hait,et al.  Preliminary geologic investigation of the Apollo 15 landing site , 1972 .

[17]  William K. Hartmann,et al.  Planetary cratering 2: Studies of saturation equilibrium , 1997 .

[18]  D. Davis,et al.  The unusual dynamical environment of Phobos and Deimos , 1981 .

[19]  Jack Wisdom,et al.  Rotational dynamics of irregularly shaped natural satellites , 1987 .

[20]  J. Veverka,et al.  Phobos, Deimos, and the Moon: size and distribution of crater ejecta blocks , 1986 .

[21]  M. Cintala,et al.  The Distribution of Blocks around a Fresh Lunar Mare Crater , 1982 .

[22]  K. Holsapple,et al.  Crater ejecta scaling laws - Fundamental forms based on dimensional analysis , 1983 .

[23]  G. Neukum,et al.  Cratering on Gaspra , 1993 .

[24]  P. Schultz,et al.  Cretaceous-Tertiary (Chicxulub) impact angle and its consequences , 1996 .

[25]  W. Hartmann Does crater “saturation equilibrium” occur in the solar system? , 1984 .

[26]  R. Arvidson,et al.  Horizontal transport of the regolith, modification of features, and erosion rates on the lunar surface , 1975 .

[27]  Thomas C. Duxbury,et al.  Grooves on Phobos: Their distribution, morphology and possible origin , 1979 .

[28]  J. Veverka,et al.  Photometric Properties of Phobos Surface Materials From Viking Images , 1998 .

[29]  J. Burns,et al.  Life near the Roche limit - Behavior of ejecta from satellites close to planets , 1980 .

[30]  W. Hartmann Terrestrial, lunar, and interplanetary rock fragmentation , 1969 .

[31]  P. Thomas Ejecta Emplacement on the Martian Satellites , 1998 .

[32]  H. J. Moore Estimates of the mechanical properties of lunar surface using tracks and secondary impact craters produced by blocks and boulders , 1970 .

[33]  G. A. Neumann,et al.  The Topography (and Ephemeris) of Phobos from MOLA Ranging , 2000 .

[34]  A. Fujiwara Stickney-forming impact on phobos: crater shape and induced stress distribution , 1991 .

[35]  Erik Asphaug,et al.  Impact Simulations with Fracture. I. Method and Tests , 1994 .

[36]  J. Veverka,et al.  The Surface of Deimos: Contribution of Materials and Processes to Its Unique Appearance , 1996 .

[37]  M. Cintala,et al.  Characteristics of the cratering process on small satellites and asteroids , 1978 .

[38]  Daniel D. Durda,et al.  EROSION AND EJECTA REACCRETION ON 243 IDA AND ITS MOON , 1996 .

[39]  M. Cintala,et al.  Grooves on Phobos: evidence for possible secondary cratering origin. , 1979 .