Orthonormal basis functions for modeling continuous-time fractional systems 1
暂无分享,去创建一个
Alain Oustaloup | Mohamed Aoun | Rachid Malti | François Levron | A. Oustaloup | R. Malti | M. Aoun | F. Levron
[1] Robert M. Darling,et al. On the Short‐Time Behavior of Porous Intercalation Electrodes , 1997 .
[2] B. Ninness,et al. A unifying construction of orthonormal bases for system identification , 1997, IEEE Trans. Autom. Control..
[3] D. Matignon. Representations en variables d'etat de modeles de guides d'ondes avec derivation fractionnaire , 1994 .
[4] A. Oustaloup,et al. Modeling and identification of a non integer order system , 1999, 1999 European Control Conference (ECC).
[5] A. Oustaloup,et al. Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .
[6] A. El-Sayed,et al. On the generalized Laguerre polynomials of arbitrary (fractional) orders and quantum mechanics , 1999 .
[7] Olivier Cois,et al. Systèmes linéaires non entiers et identification par modèle non entier : application en thermique , 2002 .
[8] Paul Abbott. Generalized Laguerre polynomials and quantum mechanics , 2000 .
[9] Jozsef Bokor,et al. System identification with generalized orthonormal basis functions , 1995, Autom..
[10] Alain Oustaloup,et al. SYSTEM IDENTIFICATION USING FRACTIONAL HAMMERSTEIN MODELS , 2002 .
[11] B. Wahlberg. System identification using Laguerre models , 1991 .
[12] Alain Oustaloup,et al. ENERGY OF FRACTIONAL ORDER TRANSFER FUNCTIONS , 2002 .