Breakdown of electroneutrality in nanopores.

Ion transport in extremely narrow nanochannels has gained increasing interest in recent years due to unique physical properties at the nanoscale and the technological advances that allow us to study them. It is tempting to approach this confined regime with the theoretical tools and knowledge developed for membranes and microfluidic devices, and naively apply continuum models, such as the Poisson-Nernst-Planck and Navier-Stokes equations. However, it turns out that some of the most basic principles we take for granted in larger systems, such as the complete screening of surface charge by counter-ions, can break down under extreme confinement. We show that in a truly one-dimensional system of ions interacting with three-dimensional electrostatic interactions, the screening length is exponentially large, and can easily exceed the macroscopic length of a nanotube. Without screening, electroneutrality breaks down within the nanotube, with fundamental consequences for ion transport and electrokinetic phenomena. In this work, we build a general theoretical framework for electroneutrality breakdown in nanopores, focusing on the most interesting case of a one-dimensional nanotube, and show how it provides an elegant interpretation for the peculiar scaling observed in experimental measurements of ionic conductance in carbon nanotubes.

[1]  K. Meyer,et al.  La perméabilité des membranes I. Théorie de la perméabilité ionique , 1936 .

[2]  Kwong‐Yu Chan,et al.  NON-NEUTRALITY IN A CHARGED CAPILLARY , 1995 .

[3]  S. Rivera,et al.  Grand Canonical Ensemble Monte Carlo Simulations of Donnan Potentials, Nonelectroneutrality, Activity Coefficients and Excess Energy in Spherical Charged or Uncharged Pores with Restricted Primitive Model Electrolytes , 1994 .

[4]  Max Whitby,et al.  Enhanced fluid flow through nanoscale carbon pipes. , 2008, Nano letters.

[5]  Martin Z. Bazant,et al.  Homogenization of the Poisson-Nernst-Planck equations for Ion Transport in Charged Porous Media , 2012, SIAM J. Appl. Math..

[6]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[7]  J. F. Osterle,et al.  Membrane transport characteristics of ultrafine capillaries. , 1968, The Journal of chemical physics.

[8]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[9]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[10]  M. Bazant,et al.  Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. , 2009, Advances in colloid and interface science.

[11]  H. Orland,et al.  Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation , 1997, cond-mat/9803258.

[12]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.

[13]  A. Noy,et al.  Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins , 2017, Science.

[14]  Y. Levin,et al.  Ion fluxes through nanopores and transmembrane channels. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Hsueh-Chia Chang,et al.  Energy Conversion Efficiency of Nanofluidic Batteries: Hydrodynamic Slip and Access Resistance , 2013 .

[16]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[17]  Alessandro Siria,et al.  Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube , 2013, Nature.

[18]  R. Tsien,et al.  Mechanism of ion permeation through calcium channels , 1984, Nature.

[19]  Olivares,et al.  Violation of the electroneutrality condition in confined charged fluids. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  A. Finkelstein,et al.  The gramicidin a channel: A review of its permeability characteristics with special reference to the single-file aspect of transport , 1981, The Journal of Membrane Biology.

[21]  Yu. Jiang,et al.  VIOLATION OF THE ELECTRONEUTRALITY CONDITION IN CONFINED UNSYMMETRICAL ELECTROLYTES , 1996 .

[22]  Kwong‐Yu Chan,et al.  Non-neutrality in a charged slit pore , 1997 .

[23]  B. Eisenberg,et al.  Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.

[24]  R. Schlögl Zur Theorie der anomalen Osmose. , 1955 .

[25]  Ben Corry,et al.  Water and ion transport through functionalised carbon nanotubes: implications for desalination technology , 2011 .

[26]  P. M. Biesheuvel,et al.  Analysis of ionic conductance of carbon nanotubes. , 2016, Physical review. E.

[27]  Chem. , 2020, Catalysis from A to Z.

[28]  Sung Jae Kim,et al.  Direct seawater desalination by ion concentration polarization. , 2010, Nature nanotechnology.

[29]  Dezso Boda,et al.  Combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel. , 2007, Physical review letters.

[30]  W. Almers,et al.  Non‐selective conductance in calcium channels of frog muscle: calcium selectivity in a single‐file pore. , 1984, The Journal of physiology.

[31]  G. López,et al.  Electrostatic potential and electroosmotic flow in a cylindrical capillary filled with symmetric electrolyte: analytic solutions in thin double layer approximation. , 2006, Journal of colloid and interface science.

[32]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Cees Dekker,et al.  Electrokinetic energy conversion efficiency in nanofluidic channels. , 2006, Nano letters.

[34]  B. Schiedt,et al.  A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores , 2005 .

[35]  C. Werner,et al.  Streaming potential and streaming current measurements at planar solid/liquid interfaces for simultaneous determination of zeta potential and surface conductivity , 2001 .

[36]  Y. Levin,et al.  Charge neutrality breakdown in confined aqueous electrolytes: Theory and simulation. , 2016, The Journal of chemical physics.

[37]  E. Mccleskey,et al.  Permeation and selectivity in calcium channels. , 2003, Annual review of physiology.

[38]  B. Eisenberg,et al.  Steric selectivity in Na channels arising from protein polarization and mobile side chains. , 2007, Biophysical journal.

[39]  Rebeca Marcilla,et al.  Tough Electrodes: Carbon Nanotube Fibers as the Ultimate Current Collectors/Active Material for Energy Management Devices , 2015 .

[40]  M. Zwolak,et al.  Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores. , 2017, Nanoscale.

[41]  Daniel Y. Kwok,et al.  Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena , 2003 .

[42]  L. Bocquet,et al.  Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes. , 2015, Physical review letters.

[43]  Dezso Boda,et al.  The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel. , 2006, The Journal of chemical physics.

[44]  A. Kamenev,et al.  Ion exchange phase transitions in water-filled channels with charged walls. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Ruben G. Carbonell,et al.  Transport of electrolytes in charged pores: Analysis using the method of spatial averaging , 1989 .

[46]  J A McCammon,et al.  How electrolyte shielding influences the electrical potential in transmembrane ion channels. , 1989, Biophysical journal.

[47]  Martin Z. Bazant,et al.  Nonlinear Dynamics of Ion Concentration Polarization in Porous Media: The Leaky Membrane Model , 2013, 1304.6598.

[48]  A. Lenard Exact Statistical Mechanics of a One‐Dimensional System with Coulomb Forces , 1961 .

[49]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[50]  D. Stein,et al.  Slip-enhanced electrokinetic energy conversion in nanofluidic channels , 2008, Nanotechnology.

[51]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[52]  W. Richard Bowen,et al.  Modelling the performance of membrane nanofiltration - critical assessment and model development , 2002 .

[53]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[54]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[55]  Ruey-Jen Yang,et al.  Electrokinetic energy conversion efficiency in ion-selective nanopores , 2011 .

[56]  A. Kamenev,et al.  Transport in one dimensional Coulomb gases: From ion channels to nanopores , 2005, cond-mat/0503027.

[57]  S. Garaj,et al.  Size effect in ion transport through angstrom-scale slits , 2017, Science.

[58]  Eli Ruckenstein,et al.  Electrolyte osmosis through capillaries , 1981 .

[59]  G. M. Watson,et al.  Gaseous Diffusion in Porous Media at Uniform Pressure , 1961 .

[60]  N. Aluru,et al.  Strong Electroosmotic Coupling Dominates Ion Conductance of 1.5 Nanometer Diameter Carbon Nanotube Porins. , 2019, ACS nano.

[61]  H. Eyring,et al.  Diffusion and Membrane Permeability. , 1949 .

[62]  M. Strano,et al.  Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. , 2017, Nature nanotechnology.

[63]  J. C. Fair,et al.  Reverse Electrodialysis in Charged Capillary Membranes , 1971 .

[64]  Zuzanna Siwy,et al.  Ionic selectivity of single nanochannels. , 2008, Nano letters.

[65]  Ali Mani,et al.  Deionization shocks in microstructures. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  K. Novoselov,et al.  Anomalously low dielectric constant of confined water , 2018, Science.

[67]  B. Roux,et al.  Energetics of ion conduction through the K + channel , 2022 .

[68]  A. Kamenev,et al.  Conductance of ion channels and nanopores with charged walls: a toy model. , 2005, Physical review letters.

[69]  A. J. Staverman Non-equilibrium thermodynamics of membrane processes , 1952 .

[70]  Sung Jae Kim,et al.  Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. , 2010, Chemical Society reviews.

[71]  Alejandro L. Garcia,et al.  Fluctuating hydrodynamics of electrolytes at electroneutral scales , 2018, Physical Review Fluids.

[72]  P. M. Biesheuvel,et al.  Analysis of electrolyte transport through charged nanopores. , 2015, Physical review. E.

[73]  Bob Eisenberg,et al.  Monte Carlo simulations of ion selectivity in a biological Na channel: Charge–space competition , 2002 .

[74]  Mark W. Verbrugge,et al.  Ion and Solvent Transport in Ion‐Exchange Membranes I . A Macrohomogeneous Mathematical Model , 1990 .

[75]  M. Reed,et al.  Direct Observation of Charge Inversion in Divalent Nanofluidic Devices. , 2015, Nano letters.

[76]  A. Yaroshchuk What makes a nano-channel? A limiting-current criterion , 2012 .

[77]  A. Kleinhammes,et al.  Electroneutrality breakdown and specific ion effects in nanoconfined aqueous electrolytes observed by NMR , 2015, Nature Communications.

[78]  Tarsten Teorell,et al.  Transport Processes and Electrical Phenomena in Ionic Membranes , 1953 .

[79]  F. Detcheverry,et al.  Optimizing water permeability through the hourglass shape of aquaporins , 2013, Proceedings of the National Academy of Sciences.

[80]  Ain A. Sonin,et al.  Osmosis and Ion Transport in Charged Porous Membranes: A Macroscopic, Mechanistic Model , 1976 .

[81]  M. Reed,et al.  Electric field modulation of the membrane potential in solid-state ion channels. , 2012, Nano letters.

[82]  J. Santiago,et al.  Porous glass electroosmotic pumps: theory. , 2003, Journal of colloid and interface science.

[83]  A. Majumdar,et al.  Electrochemomechanical Energy Conversion in Nanofluidic Channels , 2004 .

[84]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[85]  Electrostatics of ions inside the nanopores and trans-membrane channels , 2006, cond-mat/0604099.

[86]  S. Edwards,et al.  Exact Statistical Mechanics of a One‐Dimensional System with Coulomb Forces. II. The Method of Functional Integration , 1962 .

[87]  Aditya S. Khair,et al.  Role of Stefan-Maxwell fluxes in the dynamics of concentrated electrolytes. , 2018, Soft matter.

[88]  Martin Z. Bazant,et al.  Multicomponent Gas Diffusion in Porous Electrodes , 2014 .

[89]  D. Dean,et al.  Overscreening in a 1D lattice Coulomb gas model of ionic liquids , 2011, 1107.1050.

[90]  P. Sloth,et al.  Ion and potential distributions in charged and non-charged primitive spherical pores in equilibrium with primitive electrolyte solution calculated by grand canonical ensemble Monte Carlo simulation. Comparison with generalized Debye–Hückel and Donnan theory , 1992 .

[91]  C. Dekker,et al.  Surface-charge-governed ion transport in nanofluidic channels. , 2004, Physical review letters.

[92]  J. J. Bikerman,et al.  XXXIX. Structure and capacity of electrical double layer , 1942 .

[93]  Kwong‐Yu Chan,et al.  Deviation from electroneutrality in cylindrical pores , 1999 .

[94]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[95]  Dong-Kwon Kim,et al.  Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels , 2010 .

[96]  Sinwook Park,et al.  Interplay between Nanochannel and Microchannel Resistances. , 2016, Nano letters.

[97]  S. Dukhin,et al.  Electrokinetic phenomena at grafted polyelectrolyte layers. , 2005, Journal of colloid and interface science.

[98]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[99]  Robert S. Eisenberg,et al.  Ion flow through narrow membrane channels: part II , 1992 .

[100]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[101]  Michael S Strano,et al.  Coherence Resonance in a Single-Walled Carbon Nanotube Ion Channel , 2010, Science.

[102]  Michele Tedesco,et al.  Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes , 2016 .

[103]  Xiaohong Shao,et al.  Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. , 2013, ACS nano.

[104]  Andrew G. Glen,et al.  APPL , 2001 .

[105]  Arun Majumdar,et al.  Anomalous ion transport in 2-nm hydrophilic nanochannels. , 2010, Nature nanotechnology.

[106]  D. Busath,et al.  Monte Carlo Simulations of the Mechanism for Channel Selectivity: The Competition between Volume Exclusion and Charge Neutrality , 2000 .