Decoding Microbial Chatter: Cell-Cell Communication in Bacteria

Intelligence operations worldwide monitor individuals directly or indirectly linked to terrorist networks for their communication activities, collectively described as “chatter.” Considerable effort and resources are devoted to assessing intelligence chatter. A major challenge is to distinguish

[1]  J. M. Dow,et al.  A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule , 1997, Molecular microbiology.

[2]  B. Bassler,et al.  Structural identification of a bacterial quorum-sensing signal containing boron , 2002, Nature.

[3]  R. Beavis,et al.  Bacterial interference caused by autoinducing peptide variants. , 1997, Science.

[4]  K. Geider,et al.  The rcsA gene from Erwinia amylovora: identification, nucleotide sequence, and regulation of exopolysaccharide biosynthesis. , 1990, Molecular plant-microbe interactions : MPMI.

[5]  M. Teplitski,et al.  Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. , 2000, Molecular plant-microbe interactions : MPMI.

[6]  Dale Kaiser,et al.  Dynamics of Fruiting Body Morphogenesis , 2004, Journal of bacteriology.

[7]  Lian-Hui Zhang,et al.  Quorum sensing and signal interference: diverse implications , 2004, Molecular microbiology.

[8]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[9]  Matthew R. Parsek,et al.  Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms , 2000, Nature.

[10]  A. Grossman,et al.  An Exported Peptide Functions Intracellularly to Contribute to Cell Density Signaling in B. subtilis , 1997, Cell.

[11]  A. Grossman,et al.  The ins and outs of peptide signaling. , 1998, Trends in microbiology.

[12]  S. Rice,et al.  Quorum‐sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram‐negative bacteria , 1999, Molecular microbiology.

[13]  E. Greenberg,et al.  Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain , 1995, Journal of bacteriology.

[14]  Ned S Wingreen,et al.  Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression , 2003, The EMBO journal.

[15]  R. Harshey,et al.  Bacterial motility on a surface: many ways to a common goal. , 2003, Annual review of microbiology.

[16]  Lian-Hui Zhang,et al.  AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora , 2000 .

[17]  L. Keller,et al.  Conditional Use of Sex and Parthenogenesis for Worker and Queen Production in Ants , 2004, Science.

[18]  Roy D. Welch,et al.  Waves and aggregation patterns in myxobacteria , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  E. Greenberg,et al.  Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis , 2003, Journal of bacteriology.

[20]  S. C. Winans,et al.  Identification of amino acid residues of the Agrobacterium tumefaciens quorum‐sensing regulator TraR that are critical for positive control of transcription , 2004, Molecular microbiology.

[21]  C. Waters,et al.  Role of the Enterococcus faecalis GelE Protease in Determination of Cellular Chain Length, Supernatant Pheromone Levels, and Degradation of Fibrin and Misfolded Surface Proteins , 2003, Journal of bacteriology.

[22]  R. Cortese,et al.  The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA , 2002, The EMBO journal.

[23]  Gary M. Dunny,et al.  Cell-cell signaling in bacteria , 1999 .

[24]  H. Goodrich-Blair,et al.  Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes , 2002, Molecular microbiology.

[25]  Eriko Takano,et al.  A bacterial hormone (the SCB1) directly controls the expression of a pathway‐specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor , 2005, Molecular microbiology.

[26]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[27]  L. Hancock,et al.  The Enterococcus faecalis fsr Two-Component System Controls Biofilm Development through Production of Gelatinase , 2004, Journal of bacteriology.

[28]  J. W. Golden,et al.  Different functions of HetR, a master regulator of heterocyst differentiation in Anabaena sp. PCC 7120, can be separated by mutation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M Welch,et al.  N‐acyl homoserine lactone binding to the CarR receptor determines quorum‐sensing specificity in Erwinia , 2000, The EMBO journal.

[30]  W. Champness Actinomycete Development, Antibiotic Production, and Phylogeny: Questions and Challenges , 2000 .

[31]  T. Minogue,et al.  The cell density‐dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR‐mediated repression of the rcsA gene , 2005, Molecular microbiology.

[32]  E. Greenberg,et al.  The Vibrio fischeri quorum‐sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host , 2003, Molecular microbiology.

[33]  Bonnie L. Bassler,et al.  Three Parallel Quorum-Sensing Systems Regulate Gene Expression in Vibrio harveyi , 2004, Journal of bacteriology.

[34]  M. S. Lee,et al.  Regulation of competence for genetic transformation in Streptococcus pneumoniae: a link between quorum sensing and DNA processing genes. , 2000, Research in microbiology.

[35]  S. C. Winans,et al.  The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Silverman,et al.  The luxR gene product of Vibrio harveyi is a transcriptional activator of the lux promoter , 1992, Journal of bacteriology.

[37]  G. Hayman,et al.  Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Wheeler,et al.  The Pseudomonas aeruginosaQuorum-Sensing Signal MoleculeN-(3-Oxododecanoyl)-l-Homoserine Lactone Has Immunomodulatory Activity , 1998, Infection and Immunity.

[39]  John C. Anderson,et al.  Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA , 2002, Nature.

[40]  B. Lazazzera,et al.  The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. , 2003, Frontiers in bioscience : a journal and virtual library.

[41]  A. Podbielski,et al.  Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Brooks,et al.  Microarray Analysis of Pseudomonas aeruginosa Quorum-Sensing Regulons: Effects of Growth Phase and Environment , 2003, Journal of bacteriology.

[43]  B. Bassler,et al.  Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma‐54 , 2000, Molecular microbiology.

[44]  M. Schell,et al.  Identification of 3‐hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum , 1997, Molecular microbiology.

[45]  Dale Kaiser,et al.  Signaling in myxobacteria. , 2004, Annual review of microbiology.

[46]  G. Caetano-Anollés,et al.  Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Lqaqvnp,et al.  Two-Component Signal Transduction in Enterococcus faecalis † , 2002 .

[48]  A. Poplawsky,et al.  pigB determines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestris pv. campestris , 1997, Journal of bacteriology.

[49]  P. Rather,et al.  Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis , 2004, Molecular microbiology.

[50]  B. Bassler,et al.  Bacterial social engagements. , 2004, Trends in cell biology.

[51]  Shawn R Campagna,et al.  Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. , 2004, Molecular cell.

[52]  M. Churchill,et al.  Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. , 2002, Molecular cell.

[53]  S. Kjelleberg,et al.  Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling , 1996, Journal of bacteriology.

[54]  Lian-Hui Zhang,et al.  Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase , 2001, Nature.

[55]  K. Nickerson,et al.  Quorum Sensing in the Dimorphic FungusCandida albicans Is Mediated by Farnesol , 2001, Applied and Environmental Microbiology.

[56]  D. Kaiser,et al.  C-factor: A cell-cell signaling protein required for fruiting body morphogenesis of M. Xanthus , 1990, Cell.

[57]  E. P. Greenberg,et al.  Quorum Sensing in Vibrio fischeri: Analysis of the LuxR DNA Binding Region by Alanine-Scanning Mutagenesis , 2001, Journal of bacteriology.

[58]  M. Surette,et al.  Metabolic differentiation in actively swarming Salmonella , 2004, Molecular microbiology.

[59]  Ho-Sung Yoon,et al.  Heterocyst development in Anabaena. , 2003, Current opinion in microbiology.

[60]  R. Redfield Is quorum sensing a side effect of diffusion sensing? , 2002, Trends in microbiology.

[61]  E. Greenberg,et al.  Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Surette,et al.  Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Dale Kaiser,et al.  Coupling cell movement to multicellular development in myxobacteria , 2003, Nature Reviews Microbiology.

[64]  M. Houghton,et al.  Heterocyst Pattern Formation Controlled by a Diffusible Peptide , 1998 .

[65]  U. Jenal Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? , 2004, Current opinion in microbiology.

[66]  J. Handelsman Metagenomics: Application of Genomics to Uncultured Microorganisms , 2004, Microbiology and Molecular Biology Reviews.

[67]  Roger S Smith,et al.  P. aeruginosa quorum-sensing systems and virulence. , 2003, Current opinion in microbiology.

[68]  K. Visick,et al.  Two-Component Sensor Required for Normal Symbiotic Colonization of Euprymna scolopes by Vibrio fischeri , 2001, Journal of bacteriology.

[69]  Lian-Hui Zhang,et al.  A bacterial cell–cell communication signal with cross‐kingdom structural analogues , 2003, Molecular microbiology.

[70]  Edward G. Ruby,et al.  Vibrio fischeri lux Genes Play an Important Role in Colonization and Development of the Host Light Organ , 2000, Journal of bacteriology.

[71]  J. Nodwell,et al.  The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type‐specific manner under the direct control of RamR , 2002, Molecular microbiology.

[72]  M. Hudson,et al.  The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Y. Yamada,et al.  A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). , 2001, Molecular microbiology.

[74]  E. Ruby,et al.  Vibrio fischeri LuxS and AinS: Comparative Study of Two Signal Synthases , 2004, Journal of bacteriology.

[75]  Yung-Hua Li,et al.  Esp-Independent Biofilm Formation by Enterococcus faecalis , 2004, Journal of bacteriology.

[76]  D. Faure,et al.  The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. , 2004, Molecular plant-microbe interactions : MPMI.

[77]  A. Prince,et al.  Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. , 1995, The Journal of clinical investigation.

[78]  D. Pritchard,et al.  Differential Immune Modulatory Activity of Pseudomonas aeruginosa Quorum-Sensing Signal Molecules , 2004, Infection and Immunity.

[79]  S. Horinouchi,et al.  A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. , 2002, Frontiers in bioscience : a journal and virtual library.

[80]  E. Martens,et al.  Early Colonization Events in the Mutualistic Association between Steinernema carpocapsae Nematodes and Xenorhabdus nematophila Bacteria , 2003, Journal of bacteriology.

[81]  H. Ma,et al.  Cloning and analysis of a gene cluster from Streptomyces coelicolor that causes accelerated aerial mycelium formation in Streptomyces lividans , 1994, Journal of bacteriology.

[82]  D. Clewell,et al.  Identification and Characterization of a Determinant (eep) on the Enterococcus faecalisChromosome That Is Involved in Production of the Peptide Sex Pheromone cAD1 , 1999, Journal of bacteriology.

[83]  B. Ahmer,et al.  Detection of Other Microbial Species by Salmonella: Expression of the SdiA Regulon , 2003, Journal of bacteriology.

[84]  Lotte Søgaard-Andersen,et al.  Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. , 2003, Genes & development.

[85]  R. Losick,et al.  Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor , 1991, Cell.

[86]  R. D. Tillotson,et al.  A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophillum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures , 1998, Molecular microbiology.

[87]  T. Standiford,et al.  The Pseudomonas aeruginosa Autoinducer N-3-Oxododecanoyl Homoserine Lactone Accelerates Apoptosis in Macrophages and Neutrophils , 2003, Infection and Immunity.

[88]  Miguel Cámara,et al.  Cell-to-Cell Communication Across the Prokaryote-Eukaryote Boundary , 2002, Science.

[89]  B. Bassler,et al.  Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi , 1994, Molecular microbiology.

[90]  H. Sahl,et al.  Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. , 1998, Annual review of microbiology.

[91]  W. D. de Vos,et al.  Gelatinase biosynthesis‐activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis , 2001, Molecular microbiology.

[92]  H. Schweizer,et al.  Structure of the Pseudomonas aeruginosa acyl‐homoserinelactone synthase LasI , 2004, Molecular microbiology.

[93]  Samuel I. Miller,et al.  Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[94]  N. Wingreen,et al.  The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae , 2004, Cell.

[95]  Frank Bernhard,et al.  The autoregulatory role of EsaR, a quorum‐sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function , 2002, Molecular microbiology.

[96]  E. Greenberg,et al.  Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[97]  M. Surette,et al.  The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum‐sensing signal molecule , 2001, Molecular microbiology.

[98]  G. Dunny,et al.  ccfA, the Genetic Determinant for the cCF10 Peptide Pheromone in Enterococcus faecalis OG1RF , 2002, Journal of bacteriology.

[99]  E. Stackebrandt,et al.  Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. , 1997, Annual review of microbiology.

[100]  R. Tompkins,et al.  Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[101]  E. Greenberg,et al.  Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[102]  S. Molin,et al.  The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. , 2001, Microbiology.

[103]  Eriko Takano,et al.  A complex role for the γ‐butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2) , 2001 .

[104]  Jindong Zhao,et al.  HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[105]  G. Dunny,et al.  Cell-Associated Pheromone Peptide (cCF10) Production and Pheromone Inhibition in Enterococcus faecalis , 2000, Journal of bacteriology.

[106]  A. Grossman,et al.  Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. , 1996, Genes & development.

[107]  E. P. Greenberg,et al.  Metabolism of Acyl-Homoserine Lactone Quorum-Sensing Signals by Variovorax paradoxus , 2000, Journal of bacteriology.

[108]  Y. Dong,et al.  AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[109]  R. Novick Autoinduction and signal transduction in the regulation of staphylococcal virulence , 2003, Molecular microbiology.

[110]  S. C. Winans,et al.  Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.