The Parameterized Complexity of Graph Cyclability

The cyclability of a graph is the maximum integer $k$ for which every $k$ vertices lie on a cycle. The algorithmic version of the problem, given a graph $G$ and a non-negative integer $k,$ decide whether the cyclability of $G$ is at least $k,$ is {\sf NP}-hard. We study the parametrized complexity of this problem. We prove that this problem, parameterized by $k,$ is ${\sf co\mbox{-}W[1]}$-hard and that its does not admit a polynomial kernel on planar graphs, unless ${\sf NP}\subseteq{\sf co}\mbox{-}{\sf NP}/{\sf poly}$. On the positive side, we give an {\sf FPT} algorithm for planar graphs that runs in time $2^{2^{O(k^2\log k)}}\cdot n^2$. Our algorithm is based on a series of graph-theoretical results on cyclic linkages in planar graphs.

[1]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[2]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions , 2010, Algorithmica.

[3]  Dimitrios M. Thilikos,et al.  Tight Bounds for Linkages in Planar Graphs , 2011, ICALP.

[4]  Paul D. Seymour,et al.  Graph Minors. XXII. Irrelevant vertices in linkage problems , 2012, J. Comb. Theory, Ser. B.

[5]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[8]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[9]  Dimitrios M. Thilikos,et al.  Planar Disjoint-Paths Completion , 2011, IPEC.

[10]  Paul D. Seymour,et al.  Graph minors. XXI. Graphs with unique linkages , 2009, J. Comb. Theory, Ser. B.

[11]  Hisao Tamaki,et al.  Improved Bounds on the Planar Branchwidth with Respect to the Largest Grid Minor Size , 2010, Algorithmica.

[12]  Paul Wollan,et al.  A shorter proof of the graph minor algorithm: the unique linkage theorem , 2010, STOC '10.

[13]  Michael R. Fellows,et al.  Fixed-parameter tractability and completeness III: some structural aspects of the W hierarchy , 1993 .

[14]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[15]  G. Dirac In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen† , 1960 .

[16]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[17]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XVI : Canonical graph decompositions , 2005, Log. Methods Comput. Sci..

[18]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[19]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[20]  Michael R. Fellows,et al.  Review of: Fundamentals of Parameterized Complexity by Rodney G. Downey and Michael R. Fellows , 2015, SIGA.

[21]  Ken-ichi Kawarabayashi,et al.  An Improved Algorithm for Finding Cycles Through Elements , 2008, IPCO.

[22]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[23]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[24]  Bruce A. Reed,et al.  An Improved Algorithm for Finding Tree Decompositions of Small Width , 1999, WG.

[25]  Hao Li,et al.  A generalization of Dirac's theorem on cycles through k vertices in k-connected graphs , 2007, Discret. Math..

[26]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[27]  Brendan D. McKay,et al.  Cycles Through 23 Vertices in 3-Connected Cubic Planar Graphs , 1999, Graphs Comb..

[28]  Dimitrios M. Thilikos,et al.  Catalan structures and dynamic programming in H-minor-free graphs , 2008, SODA '08.

[29]  Erik D. Demaine,et al.  The Bidimensional Theory of Bounded-Genus Graphs , 2004, SIAM J. Discret. Math..

[30]  B. Mohar,et al.  Graph Minors , 2009 .

[31]  Petr A. Golovach,et al.  Contraction obstructions for treewidth , 2011, J. Comb. Theory, Ser. B.

[32]  Martin Grötschel Hypo-Hamiltonian Facets of the Symmetric Travelling Salesman Polytope , 1978 .

[33]  P Erdős (1) 15* Remarks on a Paper of Pósa , .

[34]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[35]  Dimitrios M. Thilikos,et al.  Dynamic programming for graphs on surfaces , 2014, TALG.

[36]  J. F. Geelena,et al.  Embedding grids in surfaces , 2004 .

[37]  Michael D. Plummer,et al.  A NINE VERTEX THEOREM FOR 3-CONNECTED CLAW-FREE GRAPHS , 2001 .

[38]  M. Watkins,et al.  Cycles and Connectivity in Graphs , 1967, Canadian Journal of Mathematics.

[39]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[40]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[41]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .