A linear virtual element method for the Kirchhoff plate buckling problem

Abstract In this paper, a linear virtual element method for the approximation of the Kirchhoff plate buckling eigenvalue problem subjected to the simply supported boundary condition is studied. We give the weak formulation of the spectral problem by introducing an auxiliary variable, and construct a piecewise linear and lower regular virtual element space. Moreover, we employ the spectral theory of compact operator to prove the spectral approximation and optimal order for the eigenvalues. Finally, some numerical results are presented.

[1]  Francesca Gardini,et al.  Virtual element method for second-order elliptic eigenvalue problems , 2016, 1610.03675.

[2]  Kazuo Ishihara On the mixed finite element approximation for the buckling of plates , 1979 .

[3]  David Mora,et al.  A virtual element method for the transmission eigenvalue problem , 2018, Mathematical Models and Methods in Applied Sciences.

[4]  Lourenço Beirão da Veiga,et al.  A virtual element method for the acoustic vibration problem , 2016, Numerische Mathematik.

[5]  David Mora,et al.  A virtual element method for the vibration problem of Kirchhoff plates , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[6]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.

[7]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[8]  Franco Dassi,et al.  High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..

[9]  Petter E. Bjørstad,et al.  High Precision Solutions of Two Fourth Order Eigenvalue Problems , 1999, Computing.

[10]  David Mora,et al.  Virtual element for the buckling problem of Kirchhoff–Love plates , 2020 .

[11]  Rolf Rannacher,et al.  Nonconforming finite element methods for eigenvalue problems in linear plate theory , 1979 .

[12]  Gianmarco Manzini,et al.  The nonconforming Virtual Element Method for eigenvalue problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[13]  Aihui Zhou,et al.  Finite Element Methods for Eigenvalue Problems , 2016 .

[14]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[15]  Felipe Millar,et al.  A finite element method for the buckling problem of simply supported Kirchhoff plates , 2015, J. Comput. Appl. Math..

[16]  Gianmarco Manzini,et al.  The Virtual Element Method for Eigenvalue Problems with Potential Terms on Polytopic Meshes , 2018, Applications of Mathematics.

[17]  G. Vacca,et al.  The p- and hp-versions of the virtual element method for elliptic eigenvalue problems , 2018, Comput. Math. Appl..