A stiffly accurate integrator for elastodynamic problems

We present a new integration algorithm for the accurate and efficient solution of stiff elastodynamic problems governed by the second-order ordinary differential equations of structural mechanics. Current methods have the shortcoming that their performance is highly dependent on the numerical stiffness of the underlying system that often leads to unrealistic behavior or a significant loss of efficiency. To overcome these limitations, we present a new integration method which is based on a mathematical reformulation of the underlying differential equations, an exponential treatment of the full nonlinear forcing operator as opposed to more standard partially implicit or exponential approaches, and the utilization of the concept of stiff accuracy which ensures that the efficiency of the simulations is significantly less sensitive to increased stiffness. As a consequence, we are able to tremendously accelerate the simulation of stiff systems compared to established integrators and significantly increase the overall accuracy. The advantageous behavior of this approach is demonstrated on a broad spectrum of complex examples like deformable bodies, textiles, bristles, and human hair. Our easily parallelizable integrator enables more complex and realistic models to be explored in visual computing without compromising efficiency.

[1]  Man Liu,et al.  Formulation of Rayleigh damping and its extensions , 1995 .

[2]  P. Deuflhard A study of extrapolation methods based on multistep schemes without parasitic solutions , 1979 .

[3]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[4]  Vu Thai Luan,et al.  Exponential B-Series: The Stiff Case , 2013, SIAM J. Numer. Anal..

[5]  Mayya Tokman,et al.  Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods , 2006, J. Comput. Phys..

[6]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[7]  DOMINIK L. MICHELS,et al.  Exponential integrators for stiff elastodynamic problems , 2014, ACM Trans. Graph..

[8]  H. V. D. Vorst,et al.  An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .

[9]  Arieh Iserles,et al.  Highly Oscillatory Problems , 2009 .

[10]  Dinesh K. Pai,et al.  STRANDS: Interactive Simulation of Thin Solids using Cosserat Models , 2002, Comput. Graph. Forum.

[11]  Eitan Grinspun,et al.  Discrete elastic rods , 2008, ACM Trans. Graph..

[12]  Gerald Wempner,et al.  Finite elements, finite rotations and small strains of flexible shells , 1969 .

[13]  Vu Thai Luan,et al.  Explicit exponential Runge-Kutta methods of high order for parabolic problems , 2013, J. Comput. Appl. Math..

[14]  Eitan Grinspun,et al.  Adaptive nonlinearity for collisions in complex rod assemblies , 2014, ACM Trans. Graph..

[15]  Marco Caliari,et al.  The Leja Method Revisited: Backward Error Analysis for the Matrix Exponential , 2015, SIAM J. Sci. Comput..

[16]  Vu Thai Luan,et al.  Parallel exponential Rosenbrock methods , 2016, Comput. Math. Appl..

[17]  Mathieu Desbrun,et al.  A semi-analytical approach to molecular dynamics , 2015, J. Comput. Phys..

[18]  Olaf Etzmuß,et al.  A High Performance Solver for the Animation of Deformable Objects using Advanced Numerical Methods , 2001, Comput. Graph. Forum.

[19]  Mayya Tokman,et al.  Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs , 2013, J. Comput. Appl. Math..

[20]  Volker Grimm,et al.  Convergence Analysis of an Extended Krylov Subspace Method for the Approximation of Operator Functions in Exponential Integrators , 2013, SIAM J. Numer. Anal..

[21]  Dominik Ludewig Michels,et al.  Discrete computational mechanics for stiff phenomena , 2016, SIGGRAPH ASIA Courses.

[22]  Marlis Hochbruck,et al.  Exponential Rosenbrock-Type Methods , 2008, SIAM J. Numer. Anal..

[23]  J. D. Lawson Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .

[24]  Ernst Hairer,et al.  Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations , 2000, SIAM J. Numer. Anal..

[25]  Mathieu Desbrun,et al.  Discrete geometric mechanics for variational time integrators , 2006, SIGGRAPH Courses.

[26]  Mayya Tokman,et al.  On the performance of exponential integrators for problems in magnetohydrodynamics , 2016, J. Comput. Phys..

[27]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[28]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[29]  D. Russell,et al.  A mathematical model for linear elastic systems with structural damping , 1982 .

[30]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[31]  C. Robbins Chemical and Physical Behavior of Human Hair , 1994, Springer New York.

[32]  Eitan Grinspun,et al.  To appear in the ACM SIGGRAPH conference proceedings Efficient Simulation of Inextensible Cloth , 2007 .

[33]  Mayya Tokman,et al.  A new class of exponential propagation iterative methods of Runge-Kutta type (EPIRK) , 2011, J. Comput. Phys..

[34]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[35]  Vu Thai Luan Fourth-order two-stage explicit exponential integrators for time-dependent PDEs , 2017 .

[36]  David A. Pope An exponential method of numerical integration of ordinary differential equations , 1963, CACM.

[37]  Ricardo Cortez,et al.  The Method of Regularized Stokeslets , 2001, SIAM J. Sci. Comput..

[38]  Marco Vianello,et al.  The ReLPM Exponential Integrator for FE Discretizations of Advection-Diffusion Equations , 2004, International Conference on Computational Science.

[39]  Andrew Selle,et al.  To appear in the ACM SIGGRAPH conference proceedings A Mass Spring Model for Hair Simulation , 2008 .

[40]  Mayya Tokman,et al.  A new class of split exponential propagation iterative methods of Runge-Kutta type (sEPIRK) for semilinear systems of ODEs , 2014, J. Comput. Phys..

[41]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[42]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[43]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[44]  Jitse Niesen,et al.  Algorithm 919: A Krylov Subspace Algorithm for Evaluating the ϕ-Functions Appearing in Exponential Integrators , 2009, TOMS.

[45]  Matematik,et al.  Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[46]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[47]  Robert Dillon,et al.  Simulation of swimming organisms: coupling internal mechanics with external fluid dynamics , 2004, Computing in Science & Engineering.

[48]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[49]  Mayya Tokman,et al.  Designing efficient exponential integrators with EPIRK framework , 2017 .

[50]  Bernd Eberhardt,et al.  Implicit-Explicit Schemes for Fast Animation with Particle Systems , 2000, Computer Animation and Simulation.

[51]  Vu Thai Luan,et al.  Exponential Rosenbrock methods of order five - construction, analysis and numerical comparisons , 2014, J. Comput. Appl. Math..

[52]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[53]  G. Rainwater,et al.  A new approach to constructing efficient stiffly accurate EPIRK methods , 2016, J. Comput. Phys..

[54]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[55]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[56]  Marie-Paule Cani,et al.  Super-helices for predicting the dynamics of natural hair , 2006, SIGGRAPH 2006.

[57]  S. Krogstad Generalized integrating factor methods for stiff PDEs , 2005 .

[58]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[59]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[60]  Marlis Hochbruck,et al.  Closing the gap between trigonometric integrators and splitting methods for highly oscillatory differential equations , 2018 .

[61]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[62]  Awad H. Al-Mohy,et al.  Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..

[63]  I. N. Sneddon,et al.  The Solution of Ordinary Differential Equations , 1987 .

[64]  Dominik Ludewig Michels,et al.  A physically based approach to the accurate simulation of stiff fibers and stiff fiber meshes , 2015, Comput. Graph..