Branching in the enumeration degrees of the Σ20 sets

We show that every incomplete Σ20 enumeration degree is meet-reducible in the structure of the enumeration degrees of the Σ20 sets.

[1]  R. Soare,et al.  Not every finite lattice is embeddable in the recursively enumerable degrees , 1980 .

[2]  S. Barry Cooper,et al.  Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense , 1984, Journal of Symbolic Logic.

[3]  S. Ahmad Embedding the diamond in the σ 2 enumeration degrees , 1991 .

[4]  Alistair H. Lachlan,et al.  Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .

[5]  Theodore A. Slaman,et al.  The Density of Infima in the Recursively Enumerable Degrees , 1991, Ann. Pure Appl. Log..

[6]  Kevin McEvoy,et al.  On minimal pairs of enumeration degrees , 1985, Journal of Symbolic Logic.

[7]  Juichi Shinoda,et al.  Preface - Papers presented at the International Symposium on Mathematical Logic and its Applications Nagoya, Japan, November 7-11, 1988 , 1991, Ann. Pure Appl. Log..

[8]  S. Cooper Enumeration reducibility, nondeterministic computations and relative computability of partial functions , 1990 .

[9]  R. Soare Recursively enumerable sets and degrees , 1987 .

[10]  Peter A. Fejer The density of the nonbranching degrees , 1983, Ann. Pure Appl. Log..

[11]  Kevin McEvoy,et al.  Jumps of quasi-minimal enumeration degrees , 1985, Journal of Symbolic Logic.

[12]  H. Rogers,et al.  Reducibility and Completeness for Sets of Integers , 1959 .

[13]  Alistair H. Lachlan,et al.  Then-rea enumeration degrees are dense , 1992, Arch. Math. Log..

[14]  Alistair H. Lachlan Embedding nondistributive lattices in the recursively enumerable degrees , 1972 .

[15]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .