Branching in the enumeration degrees of the Σ20 sets
暂无分享,去创建一个
[1] R. Soare,et al. Not every finite lattice is embeddable in the recursively enumerable degrees , 1980 .
[2] S. Barry Cooper,et al. Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense , 1984, Journal of Symbolic Logic.
[3] S. Ahmad. Embedding the diamond in the σ 2 enumeration degrees , 1991 .
[4] Alistair H. Lachlan,et al. Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .
[5] Theodore A. Slaman,et al. The Density of Infima in the Recursively Enumerable Degrees , 1991, Ann. Pure Appl. Log..
[6] Kevin McEvoy,et al. On minimal pairs of enumeration degrees , 1985, Journal of Symbolic Logic.
[7] Juichi Shinoda,et al. Preface - Papers presented at the International Symposium on Mathematical Logic and its Applications Nagoya, Japan, November 7-11, 1988 , 1991, Ann. Pure Appl. Log..
[8] S. Cooper. Enumeration reducibility, nondeterministic computations and relative computability of partial functions , 1990 .
[9] R. Soare. Recursively enumerable sets and degrees , 1987 .
[10] Peter A. Fejer. The density of the nonbranching degrees , 1983, Ann. Pure Appl. Log..
[11] Kevin McEvoy,et al. Jumps of quasi-minimal enumeration degrees , 1985, Journal of Symbolic Logic.
[12] H. Rogers,et al. Reducibility and Completeness for Sets of Integers , 1959 .
[13] Alistair H. Lachlan,et al. Then-rea enumeration degrees are dense , 1992, Arch. Math. Log..
[14] Alistair H. Lachlan. Embedding nondistributive lattices in the recursively enumerable degrees , 1972 .
[15] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .