The cerebellum as a predictor of neural messages—I. The stable estimator hypothesis

[1]  I KOHLER,et al.  Experiments with goggles. , 1962, Scientific American.

[2]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[3]  Stephen Grossberg,et al.  On Learning of Spatiotemporal Patterns by Networks with Ordered Sensory and Motor Components 1. Excitatory Components of the Cerebellum , 1969 .

[4]  M Ito,et al.  Neurophysiological aspects of the cerebellar motor control system. , 1970, International journal of neurology.

[5]  J. Albus A Theory of Cerebellar Function , 1971 .

[6]  D. L. Meyer,et al.  Compensation of Vestibular Lesions , 1974 .

[7]  R. Llinás,et al.  Inferior olive: its role in motor learing , 1975, Science.

[8]  Toshiaki Takeda,et al.  The origin of the pretecto-olivary tract. A study using the horseradish peroxidase method , 1976, Brain Research.

[9]  A. Schoppmann,et al.  A direct afferent visual pathway from the nucleus of the optic tract to the inferior olive in the cat , 1976, Brain Research.

[10]  A. M. Uttley A two-pathway informon theory of conditioning and adaptive pattern recognition , 1976, Brain Research.

[11]  D. Robinson Adaptive gain control of vestibuloocular reflex by the cerebellum. , 1976, Journal of neurophysiology.

[12]  V. Chan‐Palay Cerebellar Dentate Nucleus: Organization, Cytology and Transmitters , 1977 .

[13]  W. T. Thach,et al.  Purkinje cell activity during motor learning , 1977, Brain Research.

[14]  A. Fuchs,et al.  Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. , 1978, Journal of neurophysiology.

[15]  A. Fuchs,et al.  Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. , 1978, Journal of neurophysiology.

[16]  J R Lackner,et al.  Some influences of touch and pressure cues on human spatial orientation. , 1978, Aviation, space, and environmental medicine.

[17]  J. Albus Mechanisms of planning and problem solving in the brain , 1979 .

[18]  J. Simpson,et al.  The accessory optic system and its relation to the vestibulocerebellum. , 1979, Progress in brain research.

[19]  A. Pellionisz,et al.  Brain modeling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordination , 1979, Neuroscience.

[20]  O. Oscarsson Functional units of the cerebellum - sagittal zones and microzones , 1979, Trends in Neurosciences.

[21]  W. Precht,et al.  Adaptive modification of central vestibular neurons in response to visual stimulation through reversing prisms. , 1979, Journal of neurophysiology.

[22]  N. Barmack,et al.  Multiple-unit activity evoked in dorsal cap of inferior olive of the rabbit by visual stimulation. , 1980, Journal of neurophysiology.

[23]  N H Barmack,et al.  Eye movements evoked by microstimulation of dorsal cap of inferior olive in the rabbit. , 1980, Journal of neurophysiology.

[24]  F. A. Miles,et al.  Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. , 1980, Journal of neurophysiology.

[25]  O. Oscasson Functional organization of olivary projection to the cerebellar anterior lobe , 1980 .

[26]  J. Desclin,et al.  The olivocerebellar system. I. Delayed and slow inhibitory effects: An overlooked salient feature of cerebellar climbing fibers , 1980, Brain Research.

[27]  J. Desclin,et al.  The olivocerebellar system. II. Some ultrastructural correlates of inferior olive destruction in the rat , 1980, Brain Research.

[28]  N H Barmack,et al.  Effects of microlesions of dorsal cap of inferior olive of rabbits on optokinetic and vestibuloocular reflexes. , 1980, Journal of neurophysiology.

[29]  R J Leigh,et al.  A HYPOTHETICAL EXPLANATION FOR PERIODIC ALTERNATING NYSTAGMUS: INSTABILITY IN THE OPTOKINETIC‐VESTIBULAR SYSTEM * , 1981, Annals of the New York Academy of Sciences.

[30]  D. Zee,et al.  Effects of ablation of flocculus and paraflocculus of eye movements in primate. , 1981, Journal of neurophysiology.

[31]  Eiju Watanabe,et al.  Evidence of a collateralized climbing fiber projection from the inferior olive to the flocculus and vestibular nuclei in rabbits , 1981, Neuroscience Letters.

[32]  A. Pellionisz,et al.  Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor , 1982, Neuroscience.

[33]  P. Strata,et al.  The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat † , 1982, The Journal of physiology.

[34]  D A Robinson,et al.  Effects of reversible lesions and stimulation of olivocerebellar system on vestibuloocular reflex plasticity. , 1982, Journal of neurophysiology.

[35]  C. Oman A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. , 1982, Acta oto-laryngologica. Supplementum.

[36]  P Strata,et al.  Inferior olive inactivation decreases the excitability of the intracerebellar and lateral vestibular nuclei in the rat. , 1983, The Journal of physiology.

[37]  H. Galiana,et al.  A bilateral model for central neural pathways in vestibuloocular reflex. , 1984, Journal of neurophysiology.

[38]  Masao Ito The Cerebellum And Neural Control , 1984 .

[39]  B Cohen,et al.  Velocity storage and the ocular response to multidimensional vestibular stimuli. , 1985, Reviews of oculomotor research.

[40]  M Ito Synaptic plasticity in the cerebellar cortex that may underlie the vestibulo-ocular adaptation. , 1985, Reviews of oculomotor research.

[41]  M Jeannerod,et al.  Vestibular habituation: an adaptive process? , 1985, Reviews of oculomotor research.

[42]  S. Wray Adaptive mechanisms in gaze control. , 1986, Reviews of oculomotor research.

[43]  A. Pellionisz,et al.  Tensor network theory of the metaorganization of functional geometries in the central nervous system , 1985, Neuroscience.

[44]  C. Sotelo,et al.  Localization of glutamic‐acid‐decarboxylase‐immunoreactive axon terminals in the inferior olive of the rat, with special emphasis on anatomical relations between GABAergic synapses and dendrodendritic gap junctions , 1986, The Journal of comparative neurology.

[45]  S. G. Lisberger,et al.  Detection of tracking errors by visual climbing fiber inputs to monkey cerebellar flocculus during pursuit eye movements , 1986, Neuroscience Letters.

[46]  M. Sakurai Synaptic modification of parallel fibre‐Purkinje cell transmission in in vitro guinea‐pig cerebellar slices. , 1987, The Journal of physiology.

[47]  C. Batini,et al.  Release of cerebellar inhibitory activity by partial destruction of the inferior olive with kainic acid in rat , 1987, Brain Research.

[48]  J. Büttner-Ennever Neuroanatomy of the oculomotor system , 1988 .

[49]  C Maioli,et al.  Optokinetic nystagmus: modeling the velocity storage mechanism , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  S G Lisberger,et al.  The neural basis for learning of simple motor skills. , 1988, Science.

[51]  J. Hollerman,et al.  Yaw direction neurons in the cat inferior olive. , 1988, Journal of neurophysiology.

[52]  S. Lisberger,et al.  Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex. , 1988, Science.

[53]  E. Dietrichs,et al.  Direct Bidirectional Connections Between the Inferior Olive and the Cerebellar Nuclei , 1989 .

[54]  Y. Yarom Oscillatory Behavior of Olivary Neurons , 1989 .

[55]  I. Kanazawa,et al.  Voluntary Movements and Complex-Spike Discharges of Cerebellar Purkinje Cells , 1989 .

[56]  J. I. Simpson,et al.  A Synthesis of Input-Output Relationships of the Rabbit Flocculus , 1989 .

[57]  M. Sakurai,et al.  Depression and Potentiation of Parallel Fiber-Purkinje Cell Transmission in In Vitro Cerebellar Slices , 1989 .

[58]  J. I. Simpson,et al.  Three-Dimensional Representation of Retinal Image Movement by Climbing Fiber Activity , 1989 .

[59]  Michael G. Paulin,et al.  Dynamics of Compensatory Eye Movement Control: an Optimal Estimation Analysis of the Vestibulo-Ocular Reflex , 1989, Int. J. Neural Syst..

[60]  E. W. Kairiss,et al.  Hebbian synapses: biophysical mechanisms and algorithms. , 1990, Annual review of neuroscience.

[61]  S. Lisberger,et al.  Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. , 1990, Journal of neurophysiology.

[62]  J. Bower,et al.  Variability in tactile projection patterns to cerebellar folia crus IIa of the norway rat , 1990, The Journal of comparative neurology.

[63]  T. Kawasaki,et al.  Operational unit responsible for plane-specific control of eye movement by cerebellar flocculus in cat. , 1990, Journal of neurophysiology.

[64]  A. Fuchs,et al.  Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. , 1990, Journal of neurophysiology.

[65]  S G Lisberger,et al.  Visual motion commands for pursuit eye movements in the cerebellum. , 1991, Science.

[66]  Paul F. Smith,et al.  Neurochemical mechanisms of recovery from peripheral vestibular lesions (vestibular compensation) , 1991, Brain Research Reviews.

[67]  H.L. Galiana A nystagmus strategy to linearize the vestibulo-ocular reflex , 1991, IEEE Transactions on Biomedical Engineering.

[68]  S. G. Lisberger,et al.  Motor learning in a recurrent network model based on the vestibulo–ocular reflex , 1992, Nature.

[69]  Jacques Droulez,et al.  The Dynamic Memory Model and the Final Oculomotor and Cephalomotor Integrators , 1992 .

[70]  J. Bloedel Functional heterogeneity with structural homogeneity: How does the cerebellum operate? , 1992 .

[71]  C. Darlot,et al.  The cerebellum as a predictor of neural messages—II. Role in motor control and motion sickness , 1993, Neuroscience.