LEVEL SETS AND COMPUTATIONAL INTELLIGENCE ALGORITHMS TO MEDICAL IMAGE ANALYSIS IN E-MEDICUS SYSTEM

[1]  T. Rymarczyk,et al.  e-Medicus System to Segmentation and Analysis Medical Images , 2017 .

[2]  Bin Wang,et al.  A Fast and Robust Level Set Method for Image Segmentation Using Fuzzy Clustering and Lattice Boltzmann Method , 2013, IEEE Transactions on Cybernetics.

[3]  J. Sikora,et al.  A piecewise-constant minimal partition problem in the image reconstruction , 2009 .

[4]  Chunming Li,et al.  Minimization of Region-Scalable Fitting Energy for Image Segmentation , 2008, IEEE Transactions on Image Processing.

[5]  T. Rymarczyk Characterization of the shape of unknown objects by inverse numerical methods , 2012 .

[6]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[7]  Harold S Rabinovitz,et al.  Dermoscopy of pigmented skin lesions. , 2005, Journal of the American Academy of Dermatology.

[8]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[9]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[10]  Guanglei Xiong,et al.  Automated Segmentation of Drosophila RNAi Fluorescence Cellular Images Using Deformable Models , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  R. Johr Dermoscopy: alternative melanocytic algorithms-the ABCD rule of dermatoscopy, Menzies scoring method, and 7-point checklist. , 2002, Clinics in dermatology.

[12]  Wilhelm Stolz,et al.  Color Atlas of Dermatoscopy , 1991 .