Introduction to Fractional-Order Elements and Devices

We introduce the motivation for the development of fractional-order elements (FOE) and fractional-order devices (FOD) derived from them. Short introductions to some of the material science and engineering applications are presented along with an introduction into the fractional calculus which has proven to be highly effective in modeling complex systems. We explore the questions of “why power–law” and “how is it useful”? Finally we introduce the concept of a fractional-order device and how it can be included in an electronic control circuit.

[1]  V. Schmidt,et al.  Dielectric Properties of Lithium Hydrazinium Sulfate. , 1971 .

[2]  J. Machado Fractional-order derivative approximations in discrete-time control systems , 1998 .

[3]  José António Tenreiro Machado,et al.  Some pioneers of the applications of fractional calculus , 2013 .

[4]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[5]  W. Glöckle,et al.  A fractional model for mechanical stress relaxation , 1991 .

[6]  G. Bohannan Analog Fractional Order Controller in Temperature and Motor Control Applications , 2008 .

[7]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[8]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[9]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[10]  J. T. Machado Shannon Information and Power Law Analysis of the Chromosome Code , 2012 .

[11]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[12]  J. A. Tenreiro Machado,et al.  Matrix fractional systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[13]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[14]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[15]  E. Warburg,et al.  Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom , 1899 .

[16]  R. Sibatov,et al.  Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems , 2012 .

[17]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[18]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[19]  S. Westerlund,et al.  Capacitor theory , 1994 .

[20]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[21]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[22]  G. Bohannan Application of fractional calculus to polarization dynamics in solid dielectric materials , 2000 .

[23]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[24]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[25]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[26]  S. Westerlund Dead matter has memory , 1991 .

[27]  José António Tenreiro Machado,et al.  A review on the characterization of signals and systems by power law distributions , 2015, Signal Process..

[28]  Alain Oustaloup,et al.  How to impose physically coherent initial conditions to a fractional system , 2010 .

[29]  B. Sapoval,et al.  Transfer across random versus deterministic fractal interfaces. , 2000, Physical review letters.

[30]  P. Grigolini,et al.  Fractional calculus as a macroscopic manifestation of randomness , 1999 .

[31]  J. A. Tenreiro Machado,et al.  A review of power laws in real life phenomena , 2012 .

[32]  Bruce J West,et al.  Physiology, Promiscuity, and Prophecy at the Millennium: A Tale of Tails , 1999 .