Discrimination of a medial functional module within the temporal lobe using an effective connectivity model: A CCEP study

Abstract The temporal lobe is classically divided in two functional systems: the ventral visual pathway and the medial temporal memory system. However, their functional separation has been challenged by studies suggesting that the medial temporal lobe could be best understood as an extension of the hierarchically organized ventral visual pathway. Our purpose was to investigate (i) whether cerebral regions within the temporal lobe could be grouped into distinct functional assemblies, and (ii) which regions were central within these functional assemblies. We studied low intensity and low frequency electrical stimulations (0.5 mA, 1 Hz, 4 ms) performed during sixteen pre‐surgical intracerebral EEG investigations in patients with medically intractable temporal or temporo‐occipital lobe epilepsies. Eleven regions of interest were delineated per anatomical landmarks such as gyri and sulci. Effective connectivity based on electrophysiological feature (amplitude) of cortico‐cortical evoked potentials (CCEPs) was evaluated and subjected to graph metrics. The amplitudes discriminated one medial module where the hippocampus could act as a signal amplifier. Mean amplitudes of CCEPs in regions of the temporal lobe showed a generalized Pareto distribution of probability suggesting neural synchronies to be self‐organized critically. Our description of effective interactions within the temporal lobe provides a regional electrophysiological model of effective connectivity which is discussed in the context of the current hypothesis of pattern completion. HighlightsGraph metrics applied on an effective connectivity matrix derived from CCEPs.Detection of a medial functional module within the temporal lobe.The anterior hippocampus is central within the temporal lobe.The anterior hippocampus shows amplified CCEPs.

[1]  Sylvain Rheims,et al.  Functional connectivity of insular efferences , 2014, Human brain mapping.

[2]  E. Rolls,et al.  Selective Perceptual Impairments After Perirhinal Cortex Ablation , 2001, The Journal of Neuroscience.

[3]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[4]  Philippe Kahane,et al.  Preictal short-term plasticity induced by intracerebral 1 Hz stimulation , 2008, NeuroImage.

[5]  J Bancaud,et al.  Electrical stimulation with intracerebral electrodes to evoke seizures. , 1993, Advances in neurology.

[6]  David M. Groppe,et al.  Neurophysiological Investigation of Spontaneous Correlated and Anticorrelated Fluctuations of the BOLD Signal , 2013, The Journal of Neuroscience.

[7]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[8]  Joseph E LeDoux,et al.  Information cascade from primary auditory cortex to the amygdala: corticocortical and corticoamygdaloid projections of temporal cortex in the rat. , 1993, Cerebral cortex.

[9]  Sylvain Rheims,et al.  Intrainsular functional connectivity in human , 2014, Human brain mapping.

[10]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[11]  E. Vaucher,et al.  Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections , 2015, Front. Syst. Neurosci..

[12]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[13]  Guillaume Auzias,et al.  Deep sulcal landmarks: Algorithmic and conceptual improvements in the definition and extraction of sulcal pits , 2015, NeuroImage.

[14]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[15]  G. Alarcón,et al.  Frontal and temporal functional connections of the living human brain , 2007 .

[16]  M. Seghier,et al.  A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. , 2003, Brain : a journal of neurology.

[17]  L. Mannucci,et al.  Chemical Stimulation of Synaptosomes Modulates α-Ca2+/Calmodulin-Dependent Protein Kinase II mRNA Association to Polysomes , 2000, The Journal of Neuroscience.

[18]  Neal J Cohen,et al.  Hiding in plain view: Lesions of the medial temporal lobe impair online representation , 2012, Hippocampus.

[19]  Rodrigo F. Salazar,et al.  Methods, caveats and the future of large-scale microelectrode recordings in the non-human primate , 2015, Front. Syst. Neurosci..

[20]  E. Halgren,et al.  Generators of the late cognitive potentials in auditory and visual oddball tasks. , 1998, Electroencephalography and clinical neurophysiology.

[21]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[22]  M. Baxter Involvement of Medial Temporal Lobe Structures in Memory and Perception , 2009, Neuron.

[23]  David M. Groppe,et al.  Corticocortical Evoked Potentials Reveal Projectors and Integrators in Human Brain Networks , 2014, The Journal of Neuroscience.

[24]  Leslie G. Ungerleider,et al.  Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys , 1982, Behavioural Brain Research.

[25]  Sonja Grün,et al.  Cross-frequency interaction of the eye-movement related LFP signals in V1 of freely viewing monkeys , 2012, Front. Syst. Neurosci..

[26]  Edmund T. Rolls,et al.  The mechanisms for pattern completion and pattern separation in the hippocampus , 2013, Front. Syst. Neurosci..

[27]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[28]  Marco de Curtis,et al.  The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns , 2016, Journal of Neuroscience Methods.

[29]  E. Halgren,et al.  Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. , 1995, Electroencephalography and clinical neurophysiology.

[30]  H. Davis,et al.  Enhancement of Evoked Cortical Potentials in Humans Related to a Task Requiring a Decision , 1964, Science.

[31]  Yong He,et al.  Graph theoretical modeling of brain connectivity. , 2010, Current opinion in neurology.

[32]  M Guye,et al.  Cortical stimulation study of the role of rhinal cortex in déjà vu and reminiscence of memories , 2004, Neurology.

[33]  J. Rodd,et al.  Anteromedial temporal cortex supports fine-grained differentiation among objects. , 2005, Cerebral cortex.

[34]  E. Halgren,et al.  Anatomical origin of déjà vu and vivid 'memories' in human temporal lobe epilepsy. , 1994, Brain : a journal of neurology.

[35]  David C. Van Essen,et al.  Multiple processing streams in occipitotemporal visual cortex , 1994, Nature.

[36]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[37]  J. Lambert,et al.  Somatic amplification of distally generated subthreshold EPSPs in rat hippocampal pyramidal neurones , 1999, The Journal of physiology.

[38]  H. Lüders,et al.  Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. , 2006, Brain : a journal of neurology.

[39]  R G Grossman,et al.  Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures. , 1989, Journal of neurosurgery.

[40]  Thilo Gross,et al.  Self-organized criticality as a fundamental property of neural systems , 2014, Front. Syst. Neurosci..

[41]  S. Rombouts,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[42]  T. Allison,et al.  Electrophysiological Studies of Face Perception in Humans , 1996, Journal of Cognitive Neuroscience.

[43]  Rodrigo Quian Quiroga,et al.  Timing of Single-Neuron and Local Field Potential Responses in the Human Medial Temporal Lobe , 2014, Current Biology.

[44]  John T Wixted,et al.  Visual Working Memory Capacity and the Medial Temporal Lobe , 2012, The Journal of Neuroscience.

[45]  D. Mackay,et al.  Evoked Potentials Correlated with a Visual Anomaly , 1966, Nature.

[46]  Michael Petrides,et al.  Morphological patterns of the collateral sulcus in the human brain , 2012, The European journal of neuroscience.

[47]  Edward T. Bullmore,et al.  Broadband Criticality of Human Brain Network Synchronization , 2009, PLoS Comput. Biol..

[48]  M. Catani,et al.  A diffusion tensor imaging tractography atlas for virtual in vivo dissections , 2008, Cortex.

[49]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[50]  T L Babb,et al.  Functional connections in the human temporal lobe , 2004, Experimental Brain Research.

[51]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[53]  Pavel Jurák,et al.  Erratum: Synchronization of gamma oscillations increases functional connectivity of human hippocampus and inferior-middle temporal cortex during repetitive visuomotor events (European Journal of Neuroscience (2004) 19 (3088-3098)) , 2004 .

[54]  Ramona O Hopkins,et al.  Visual discrimination performance, memory, and medial temporal lobe function , 2012, Proceedings of the National Academy of Sciences.

[55]  Rosemary A. Cowell,et al.  Functional Dissociations within the Ventral Object Processing Pathway: Cognitive Modules or a Hierarchical Continuum? , 2010, Journal of Cognitive Neuroscience.

[56]  J Bancaud,et al.  Unilateral connections between amygdala and hippocampus in man. A study of epileptic patients with depth electrodes. , 1983, Electroencephalography and clinical neurophysiology.

[57]  David M. Groppe,et al.  Evoked effective connectivity of the human neocortex , 2014, Human brain mapping.

[58]  Wendy A Suzuki,et al.  Perception and the Medial Temporal Lobe: Evaluating the Current Evidence , 2009, Neuron.

[59]  O Herreras,et al.  Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials , 2001, Neuroscience.

[60]  Robert A. Gross,et al.  Spotlight on the January 6 Issue , 2015, Neurology.

[61]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[62]  L. Saksida,et al.  Memory, perception, and the ventral visual‐perirhinal‐hippocampal stream: Thinking outside of the boxes , 2007, Hippocampus.

[63]  Derek K. Jones Studying connections in the living human brain with diffusion MRI , 2008, Cortex.

[64]  J Bancaud,et al.  [Methodology of stereo EEG exploration and surgical intervention in epilepsy]. , 1973, Revue d'oto-neuro-ophtalmologie.

[65]  Wendy A. Suzuki,et al.  Perception and the Medial Temporal Lobe: Evaluating the Current Evidence , 2009, Neuron.

[66]  Olaf Sporns,et al.  Weight-conserving characterization of complex functional brain networks , 2011, NeuroImage.

[67]  Margot J. Taylor,et al.  Spatio temporal dynamics of face recognition. , 2008, Cerebral cortex.

[68]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[69]  C. Kelly,et al.  Correction for Roberts et al., Isocyanic acid in the atmosphere and its possible link to smoke-related health effects , 2011, Proceedings of the National Academy of Sciences.

[70]  J. Isnard,et al.  Hippocampal-orbitofrontal connectivity in human: An electrical stimulation study , 2005, Clinical Neurophysiology.

[71]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[72]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[73]  S. S. Stevens On the psychophysical law. , 1957, Psychological review.

[74]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[75]  Emmanuel Bigand,et al.  How functional coupling between the auditory cortex and the amygdala induces musical emotion: A single case study , 2014, Cortex.

[76]  S. Chabardès,et al.  Studying Network Mechanisms Using Intracranial Stimulation in Epileptic Patients , 2010, Front. Syst. Neurosci..

[77]  Neil Burgess,et al.  Attractor Dynamics in the Hippocampal Representation of the Local Environment , 2005, Science.

[78]  Richard C. Burgess,et al.  Correlations between ictal propagation and response to electrical cortical stimulation: A cortico-cortical evoked potential study , 2012, Epilepsy Research.

[79]  J. Gabrieli,et al.  Event-Related Activation in the Human Amygdala Associates with Later Memory for Individual Emotional Experience , 2000, The Journal of Neuroscience.

[80]  C. Honey,et al.  Mapping human brain networks with cortico-cortical evoked potentials , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[81]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[82]  Bruno Rossion,et al.  Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex , 2014, Human brain mapping.

[83]  Ehren L. Newman,et al.  DC-shifts in amplitude in-field generated by an oscillatory interference model of grid cell firing , 2014, Front. Syst. Neurosci..

[84]  David M. Bannerman,et al.  Remembering the Subtle Differences , 2007, Science.

[85]  Babiloni Claudio,et al.  Synchronization of gamma oscillations increases functional connectivity of human hippocampus and inferior‐middle temporal cortex during repetitive visuomotor events , 2004 .

[86]  Olivier Caspary,et al.  Denoising Depth EEG Signals During DBS Using Filtering and Subspace Decomposition , 2013, IEEE Transactions on Biomedical Engineering.

[87]  Richard C. Burgess,et al.  Connections of the limbic network: A corticocortical evoked potentials study , 2015, Cortex.

[88]  H. Lüders,et al.  Functional connectivity in the human language system: a cortico-cortical evoked potential study. , 2004, Brain : a journal of neurology.

[89]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[90]  Philippe Kahane,et al.  Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials , 2016, Journal of Neuroscience Methods.

[91]  H. Eichenbaum,et al.  From Conditioning to Conscious Recollection , 2001 .

[92]  E. Benarroch,et al.  The amygdala , 2015, Neurology.

[93]  Fabrice Wendling,et al.  Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas , 2005, Neuropsychologia.

[94]  Yong He,et al.  Graph Theoretical Analysis of Functional Brain Networks: Test-Retest Evaluation on Short- and Long-Term Resting-State Functional MRI Data , 2011, PloS one.

[95]  Douglas L. Hintzman,et al.  Judgments of frequency and recognition memory in a multiple-trace memory model. , 1988 .

[96]  Ken A Paller,et al.  Field potentials in the human hippocampus during the encoding and recognition of visual stimuli , 2002, Hippocampus.

[97]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[98]  Mikko Sams,et al.  Naturalistic fMRI Mapping Reveals Superior Temporal Sulcus as the Hub for the Distributed Brain Network for Social Perception , 2012, Front. Hum. Neurosci..

[99]  C D Binnie,et al.  Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. , 2002, Brain : a journal of neurology.

[100]  M. Buchsbaum,et al.  Stimulus Intensity Control and the Cortical Evoked Response , 1968, Psychosomatic medicine.

[101]  P. Ryvlin,et al.  Evoked potential study of hippocampal efferent projections in the human brain , 2011, Clinical Neurophysiology.

[102]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Philippe Kahane,et al.  Probabilistic functional tractography of the human cortex , 2013, NeuroImage.