Uncertainty Quantification for Kinetic Equations

Kinetic equations contain uncertainties in their collision kernels or scattering coefficients, initial or boundary data, forcing terms, geometry, etc. Quantifying the uncertainties in kinetic models have important engineering and industrial applications. In this article we survey recent efforts in the study of kinetic equations with random inputs, including their mathematical properties such as regularity and long-time behavior in the random space, construction of efficient stochastic Galerkin methods, and handling of multiple scales by stochastic asymptotic-preserving schemes. The examples used to illustrate the main ideas include the random linear and nonlinear Boltzmann equations, linear transport equation and the Vlasov-Poisson-Fokker-Planck equations.

[1]  Liu Liu,et al.  An Asymptotic-Preserving Stochastic Galerkin Method for the Semiconductor Boltzmann Equation with Random Inputs and Diffusive Scalings , 2017, Multiscale Model. Simul..

[2]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[3]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[4]  Berman,et al.  Collision kernels and transport coefficients. , 1986, Physical review. A, General physics.

[5]  F. Poupaud,et al.  High-field Limit for the Vlasov-poisson-fokker-planck System , 2022 .

[6]  Irene M. Gamba,et al.  SHOCK AND BOUNDARY STRUCTURE FORMATION BY SPECTRAL-LAGRANGIAN METHODS FOR THE INHOMOGENEOUS BOLTZMANN TRANSPORT EQUATION * , 2010 .

[7]  L. Sirovich Kinetic Modeling of Gas Mixtures , 2011 .

[8]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[9]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[10]  Shi Jin,et al.  A stochastic Galerkin method for the Boltzmann equation with uncertainty , 2016, J. Comput. Phys..

[11]  C. Mouhot,et al.  HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS , 2010, 1005.1495.

[12]  Michael B. Giles Multilevel Monte Carlo methods , 2015, Acta Numerica.

[13]  J. Keller,et al.  Asymptotic solution of neutron transport problems for small mean free paths , 1974 .

[14]  Juan Soler,et al.  PARABOLIC LIMIT AND STABILITY OF THE VLASOV–FOKKER–PLANCK SYSTEM , 2000 .

[15]  Liu Liu,et al.  DG-IMEX Stochastic Galerkin Schemes for Linear Transport Equation with Random Inputs and Diffusive Scalings , 2017, J. Sci. Comput..

[16]  Jan Nordström,et al.  Polynomial Chaos Methods for Hyperbolic Partial Differential Equations: Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties , 2015 .

[17]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[18]  Guannan Zhang,et al.  Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.

[19]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[20]  W. Steckelmacher Molecular gas dynamics and the direct simulation of gas flows , 1996 .

[21]  Editors , 1986, Brain Research Bulletin.

[22]  A. Jüngel Transport Equations for Semiconductors , 2009 .

[23]  Shi Jin,et al.  Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro–macro decomposition-based asymptotic-preserving method , 2017, Research in the Mathematical Sciences.

[24]  Shi Jin,et al.  Hypocoercivity and Uniform Regularity for the Vlasov-Poisson-Fokker-Planck System with Uncertainty and Multiple Scales , 2018, SIAM J. Math. Anal..

[25]  P. Degond,et al.  Mathematical Modelling of Microelectronics Semiconductor Devices Acknowledgments: This Work Originates from Lecture Notes of Courses , 2022 .

[26]  Francis Filbet On Deterministic Approximation of the Boltzmann Equation in a Bounded Domain , 2012, Multiscale Model. Simul..

[27]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[28]  Shi Jin,et al.  A stochastic asymptotic-preserving scheme for a kinetic-fluid model for disperse two-phase flows with uncertainty , 2017, J. Comput. Phys..

[29]  Daniele Venturi,et al.  Numerical methods for high-dimensional probability density function equations , 2016, J. Comput. Phys..

[30]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[31]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[32]  E. Larsen,et al.  Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II , 1989 .

[33]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[34]  Shi Jin,et al.  An asymptotic-preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings , 2017, J. Comput. Phys..

[35]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[36]  Liu Liu,et al.  Uniform Spectral Convergence of the Stochastic Galerkin Method for the Linear Semiconductor Boltzmann Equation with Random Inputs and Diffusive Scalings , 2017, 1706.04757.

[37]  Juan Soler,et al.  Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system. , 2005 .

[38]  R. Tempone,et al.  Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .

[39]  Jingwei Hu,et al.  A Stochastic Galerkin Method for the Boltzmann Equation with Multi-Dimensional Random Inputs Using Sparse Wavelet Bases , 2017 .

[40]  François Golse,et al.  The Convergence of Numerical Transfer Schemes in Diffusive Regimes I: Discrete-Ordinate Method , 1999 .

[41]  Shi Jin,et al.  Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings , 2015, J. Comput. Phys..

[42]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  Laurent Desvillettes,et al.  A proof of the smoothing properties of the positive part of Boltzmann's kernel , 1998 .

[45]  Qin Li,et al.  Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations , 2017 .

[46]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[47]  Giacomo Dimarco,et al.  Numerical methods for kinetic equations* , 2014, Acta Numerica.

[48]  Christian A. Ringhofer,et al.  Moment Methods for the Semiconductor Boltzmann Equation on Bounded Position Domains , 2001, SIAM J. Numer. Anal..

[49]  F. Poupaud,et al.  Diffusion approximation of the linear semiconductor Boltzmann equation : analysis of boundary layers , 1991 .

[50]  A. Klar An Asymptotic-Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit , 1998 .

[51]  Massimo Fornasier,et al.  A Kinetic Flocking Model with Diffusion , 2010 .

[52]  A. Bensoussan,et al.  Boundary Layers and Homogenization of Transport Processes , 1979 .

[53]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[54]  JinShi Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[55]  P. Lions,et al.  Compactness in Boltzmann’s equation via Fourier integral operators and applications. III , 1994 .

[56]  C. Bardos,et al.  DIFFUSION APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE , 1984 .

[57]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[58]  Francis Filbet,et al.  Analysis of spectral methods for the homogeneous Boltzmann equation , 2008, 0811.2849.

[59]  Li Wang,et al.  Uniform Regularity for Linear Kinetic Equations with Random Input Based on Hypocoercivity , 2016, SIAM/ASA J. Uncertain. Quantification.

[60]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[61]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[62]  Lorenzo Pareschi,et al.  Solving the Boltzmann Equation in N log2N , 2006, SIAM J. Sci. Comput..

[63]  R. Byron Bird,et al.  The Transport Properties for Non‐Polar Gases , 1948 .

[64]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[65]  C. Cercignani Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations , 2000 .

[66]  M. Loève,et al.  Elementary Probability Theory , 1977 .

[67]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[68]  Lorenzo Pareschi,et al.  Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..

[69]  Jingwei Hu,et al.  A Stochastic Galerkin Method for the Fokker–Planck–Landau Equation with Random Uncertainties , 2016 .

[70]  Irene M. Gamba,et al.  LOW AND HIGH FIELD SCALING LIMITS FOR THE VLASOV– AND WIGNER–POISSON–FOKKER–PLANCK SYSTEMS , 2001 .

[71]  Cédric Villani,et al.  Mathematics of Granular Materials , 2006 .

[72]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[73]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[74]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[75]  Hiroaki Matsumoto,et al.  Variable soft sphere molecular model for inverse-power-law or Lennard-Jones potential , 1991 .

[76]  Peter Zinterhof,et al.  Monte Carlo and Quasi-Monte Carlo Methods 1996 , 1998 .

[77]  E. A. Uehling,et al.  Transport Phenomena in Einstein-Bose and Fermi-Dirac Gases. I , 1933 .

[78]  Laurent Gosse,et al.  Space Localization and Well-Balanced Schemes for Discrete Kinetic Models in Diffusive Regimes , 2003, SIAM J. Numer. Anal..