The prediction-correction approach to nonlinear complementarity problems

Abstract This paper presents a prediction–correction approach to solving the nonlinear complementarity problem (NCP). Each iteration of the new method consists of a prediction and a correction. The predictor is produced by an inexact Logarithmic-Quadratic Proximal method; and then it is corrected by the Proximal Point Algorithm. Convergence of the new method is proved under mild assumptions. Comparison to existing methods shows the superiority of the new method. Numerical experiments including the application to traffic equilibrium problems demonstrate that the new method is attractive in practice.

[1]  M. Solodov,et al.  A UNIFIED FRAMEWORK FOR SOME INEXACT PROXIMAL POINT ALGORITHMS , 2001 .

[2]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[3]  Marc Teboulle,et al.  Convergence of Proximal-Like Algorithms , 1997, SIAM J. Optim..

[4]  Regina Sandra Burachik,et al.  A Relative Error Tolerance for a Family of Generalized Proximal Point Methods , 2001, Math. Oper. Res..

[5]  B. Curtis Eaves,et al.  On the basic theorem of complementarity , 1971, Math. Program..

[6]  Jonathan Eckstein,et al.  Approximate iterations in Bregman-function-based proximal algorithms , 1998, Math. Program..

[7]  Mounir Haddou,et al.  An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities , 1995, Math. Program..

[8]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..

[9]  M. Solodov,et al.  A UNIFIED FRAMEWORK FOR SOME INEXACT PROXIMAL POINT ALGORITHMS , 2001 .

[10]  Xiaoming Yuan,et al.  An approximate proximal-extragradient type method for monotone variational inequalities , 2004 .

[11]  Marc Teboulle,et al.  A Logarithmic-Quadratic Proximal Method for Variational Inequalities , 1999, Comput. Optim. Appl..

[12]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[13]  Masao Fukushima,et al.  A globally convergent Newton method for solving strongly monotone variational inequalities , 1993, Math. Program..

[14]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[15]  L. Liao,et al.  A new approximate proximal point algorithm for maximal monotone operator , 2003 .

[16]  B. He,et al.  A new accuracy criterion for approximate proximal point algorithms , 2001 .

[17]  Hai Yang,et al.  TRAFFIC RESTRAINT, ROAD PRICING AND NETWORK EQUILIBRIUM , 1997 .

[18]  Jorge J. Moré,et al.  Global Methods for Nonlinear Complementarity Problems , 1994, Math. Oper. Res..

[19]  P. Marcotte,et al.  A note on a globally convergent Newton method for solving monotone variational inequalities , 1986 .

[20]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[21]  Alfredo N. Iusem,et al.  A Generalized Proximal Point Algorithm for the Variational Inequality Problem in a Hilbert Space , 1998, SIAM J. Optim..