Color constancy from mutual reflection

Mutual reflection occurs when light reflected from one surface illuminates a second surface. In this situation, the color of one or both surfaces can be modified by a color-bleeding effect. In this article we examine how sensor values (e.g., RGB values) are modified in the mutual reflection region and show that a good approximation of the surface spectral reflectance function for each surface can be recovered by using the extra information from mutual reflection. Thus color constancy results from an examination of mutual reflection. Use is made of finite dimensional linear models for ambient illumination and for surface spectral reflectance. If m and n are the number of basis functions required to model illumination and surface spectral reflectance respectively, then we find that the number of different sensor classes p must satisfy the condition p≥(2 n+m)/3. If we use three basis functions to model illumination and three basis functions to model surface spectral reflectance, then only three classes of sensors are required to carry out the algorithm. Results are presented showing a small increase in error over the error inherent in the underlying finite dimension models.

[1]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[2]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[3]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[4]  Brian V. Funt,et al.  Color from black and white , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[5]  Brian A. Wandell,et al.  The Synthesis and Analysis of Color Images , 1992, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  L. Maloney Evaluation of linear models of surface spectral reflectance with small numbers of parameters. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[7]  E. R. Dixon Spectral distribution of Australian daylight , 1978 .

[8]  Mark S. Drew,et al.  Separating a Color Signal into Illumination and Surface Reflectance Components: Theory and Applications , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance , 1987 .

[10]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[11]  J. Miller Numerical Analysis , 1966, Nature.

[12]  Berthold K. P. Horn Understanding Image Intensities , 1977, Artif. Intell..

[13]  Takeo Kanade,et al.  Shape from interreflections , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[14]  B. Wandell,et al.  Black light: how sensors filter spectral variation of the illuminant , 1989, IEEE Transactions on Biomedical Engineering.

[15]  J. Koenderink,et al.  Geometrical modes as a general method to treat diffuse interreflections in radiometry , 1983 .

[16]  John K. Tsotsos,et al.  From [R, G, B] to Surface Reflectance: Computing Color Constant Descriptors in Images , 1987, IJCAI.

[17]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[18]  A. Yuille A method for computing spectral reflectance , 1987, Biological Cybernetics.

[19]  J. Cohen Dependency of the spectral reflectance curves of the Munsell color chips , 1964 .

[20]  J. Parkkinen,et al.  Characteristic spectra of Munsell colors , 1989 .

[21]  G. Buchsbaum,et al.  Quantitative studies of color constancy. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[22]  J. Beck Surface color perception , 1972 .

[23]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[24]  David A. Forsyth,et al.  Shape from shading in the light of mutual illumination , 1990, Image and Vision Computing.

[25]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[26]  Mark S. Drew,et al.  Calculating surface reflectance using a single-bounce model of mutual reflection , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[27]  Michael H. Brill,et al.  Chromatic adaptation and color constancy: A possible dichotomy , 1986 .

[28]  John K. Tsotsos,et al.  Ambient illumination and the determination of material changes. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[29]  M D'Zmura,et al.  Mechanisms of color constancy. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[30]  David A. Forsyth,et al.  Mutual illumination , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.