A new full Nesterov-Todd step feasible interior-point method for convex quadratic symmetric cone optimization

In this paper, we generalize the classical primal-dual logarithmic barrier method for linear optimization to convex quadratic optimization over symmetric cone by using Euclidean Jordan algebras. The symmetrization of the search directions used in this paper is based on the Nesterov-Todd scaling scheme, and only full Nesterov-Todd step is used at each iteration. We derive the iteration bound that matches the currently best known iteration bound for small-update methods, namely, O ( r log r e ) . Some preliminary numerical results are provided to demonstrate the computational performance of the proposed algorithm.

[1]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[2]  Zsolt Darvay New Interior Point Algorithms in Linear Programming , 2003 .

[3]  Kim-Chuan Toh,et al.  Polynomiality of an inexact infeasible interior point algorithm for semidefinite programming , 2004, Math. Program..

[4]  Yanqin Bai,et al.  A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization , 2011 .

[5]  Yan-Qin Bai,et al.  A new primal-dual path-following interior-point algorithm for semidefinite optimization , 2009 .

[6]  L. Faybusovich Euclidean Jordan Algebras and Interior-point Algorithms , 1997 .

[7]  E. D. Klerk,et al.  Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .

[8]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[9]  Guoyong Gu,et al.  Full Nesterov-Todd step infeasible interior-point method for symmetric optimization , 2011, Eur. J. Oper. Res..

[10]  Guoqiang Wang,et al.  Complexity analysis and numerical implementation of primal-dual interior-point methods for convex quadratic optimization based on a finite barrier , 2012, Numerical Algorithms.

[11]  M. Muramatsu On a Commutative Class of Search Directions for Linear Programming over Symmetric Cones , 2002 .

[12]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[13]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[14]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[15]  Cornelis Roos,et al.  Primal–dual interior-point algorithms for second-order cone optimization based on kernel functions , 2009 .

[16]  J. Sturm Similarity and other spectral relations for symmetric cones , 2000 .

[17]  Bharath Kumar Rangarajan,et al.  Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones , 2006, SIAM J. Optim..

[18]  K. Toh,et al.  A polynomial-time inexact interior-point method for convex quadratic symmetric cone programming , 2010 .

[19]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[20]  Yan-Qin Bai,et al.  A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization , 2012, Journal of Optimization Theory and Applications.

[21]  Yan-Qin Bai,et al.  A primal-dual interior-point algorithm for second-order cone optimization with full Nesterov-Todd step , 2009, Appl. Math. Comput..

[22]  Ya-Xiang Yuan,et al.  A Predictor–Corrector Algorithm for QSDP Combining Dikin-Type and Newton Centering Steps , 2001, Ann. Oper. Res..

[23]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[24]  Guoyong Gu,et al.  A Full Nesterov–Todd Step Infeasible Interior-Point Method for Second-Order Cone Optimization , 2013, Journal of Optimization Theory and Applications.

[25]  Manuel V. C. Vieira,et al.  Jordan algebraic approach to symmetric optimization , 2007 .

[26]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[27]  Levent Tunçel,et al.  Generalization of Primal—Dual Interior-Point Methods to Convex Optimization Problems in Conic Form , 2001, Found. Comput. Math..

[28]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[29]  G. Q. Wang,et al.  Primal-dual interior-point algorithm for convex quadratic semi-definite optimization , 2009 .

[30]  Mohamed Achache,et al.  A new primal-dual path-following method for convex quadratic programming , 2006 .

[31]  Kim-Chuan Toh,et al.  An inexact primal–dual path following algorithm for convex quadratic SDP , 2007, Math. Program..

[32]  Detong Zhu,et al.  Research Article: On Extending Primal-Dual Interior-Point Method for Linear Optimization to Convex Quadratic Symmetric Cone Optimization , 2013 .

[33]  L. Faybusovich A Jordan-algebraic approach to potential-reduction algorithms , 2002 .