Bayesian model selection maps for group studies

This technical note describes the construction of posterior probability maps (PPMs) for Bayesian model selection (BMS) at the group level. This technique allows neuroimagers to make inferences about regionally specific effects using imaging data from a group of subjects. These effects are characterised using Bayesian model comparisons that are analogous to the F-tests used in statistical parametric mapping, with the advantage that the models to be compared do not need to be nested. Additionally, an arbitrary number of models can be compared together. This note describes the integration of the Bayesian mapping approach with a random effects analysis model for BMS using group data. We illustrate the method using fMRI data from a group of subjects performing a target detection task.

[1]  Mark W. Woolrich,et al.  Fully Bayesian spatio-temporal modeling of FMRI data , 2004, IEEE Transactions on Medical Imaging.

[2]  Karl J. Friston,et al.  Posterior probability maps and SPMs , 2003, NeuroImage.

[3]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[4]  Mark W. Woolrich,et al.  Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data , 2005, IEEE Transactions on Medical Imaging.

[5]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Applications , 2002, NeuroImage.

[6]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[7]  Masa-aki Sato,et al.  Hierarchical Bayesian estimation for MEG inverse problem , 2004, NeuroImage.

[8]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[9]  W. Penny,et al.  Random-Effects Analysis , 2002 .

[10]  Karl J. Friston,et al.  Comparing hemodynamic models with DCM , 2007, NeuroImage.

[11]  Raymond J. Dolan,et al.  Information theory, novelty and hippocampal responses: unpredicted or unpredictable? , 2005, Neural Networks.

[12]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[13]  Mark W Woolrich,et al.  Associative learning of social value , 2008, Nature.

[15]  Adrian F. M. Smith,et al.  BOOK REVIEW: Bayesian Theory , 2001 .

[16]  Karl J. Friston,et al.  Electromagnetic source reconstruction for group studies , 2008, NeuroImage.

[17]  Karl J. Friston,et al.  A critique of functional localisers , 2006, NeuroImage.

[18]  Karl J. Friston,et al.  Encoding uncertainty in the hippocampus , 2006, Neural Networks.

[19]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[20]  Karl J. Friston,et al.  Diffusion-based spatial priors for functional magnetic resonance images , 2008, NeuroImage.

[21]  Mark W. Woolrich,et al.  Constrained linear basis sets for HRF modelling using Variational Bayes , 2004, NeuroImage.

[22]  C. Summerfield,et al.  A Neural Representation of Prior Information during Perceptual Inference , 2008, Neuron.

[23]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[24]  Karl J. Friston,et al.  Influence of Uncertainty and Surprise on Human Corticospinal Excitability during Preparation for Action , 2008, Current Biology.

[25]  J. O'Doherty,et al.  Model‐Based fMRI and Its Application to Reward Learning and Decision Making , 2007, Annals of the New York Academy of Sciences.

[26]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[27]  W. D. Penny,et al.  Random-Effects Analysis , 2002 .

[28]  Karl J. Friston,et al.  Bayesian fMRI time series analysis with spatial priors , 2005, NeuroImage.

[29]  Kenneth Rice,et al.  FDR and Bayesian Multiple Comparisons Rules , 2006 .

[30]  Karl J. Friston,et al.  Variational Bayesian inference for fMRI time series , 2003, NeuroImage.

[31]  Karl J. Friston,et al.  Modelling Geometric Deformations in Epi Time Series , 2022 .

[32]  N V Hartvig,et al.  Spatial mixture modeling of fMRI data , 2000, Human brain mapping.

[33]  Guillaume Flandin,et al.  Bayesian comparison of spatially regularised general linear models , 2007, Human brain mapping.

[34]  Matthew J. Beal,et al.  The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures , 2003 .

[35]  Jonathan D. Cohen,et al.  Computational roles for dopamine in behavioural control , 2004, Nature.

[36]  Karl J. Friston,et al.  Acute Changes in Frontoparietal Activity after Repetitive Transcranial Magnetic Stimulation over the Dorsolateral Prefrontal Cortex in a Cued Reaction Time Task , 2006, The Journal of Neuroscience.

[37]  W. D. Penny,et al.  CHAPTER 43 – Dynamic Causal Models and Bayesian selection , 2007 .

[38]  S. Debener,et al.  Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect Dynamic Changes in the Degree of Surprise , 2008, The Journal of Neuroscience.