Efficient Rotation-Discriminative Template Matching

This paper presents an efficient approach to rotation discriminative template matching. A hierarchical search divided in three steps is proposed. First, gradient magnitude is compared to rapidly localise points with high probability of match. This result is refined, in a second step, using orientation gradient histograms. A novel rotation discriminative descriptor is applied to estimate the orientation of the template in the tested image. Finally, template matching is efficiently applied with the estimated orientation and only at points with high gradient magnitude and orientation histogram similarity. Experiments show a higher performance and efficiency as compared to similar techniques.

[1]  Fatih Murat Porikli,et al.  Integral histogram: a fast way to extract histograms in Cartesian spaces , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[2]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[3]  Gregory D. Hager,et al.  Real-time tracking of image regions with changes in geometry and illumination , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  J. P. Lewis,et al.  Fast Template Matching , 2009 .

[6]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[7]  Esko Ukkonen,et al.  Faster template matching without FFT , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[8]  Shun'ichi Kaneko,et al.  Using orientation codes for rotation-invariant template matching , 2004, Pattern Recognit..

[9]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[11]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..