Realtime Registration-Based Tracking via Approximate Nearest Neighbour Search

We introduce a new 2D visual tracking algorithm that utilizes an approximate nearest neighbour search to estimate per-frame state updates. We experimentally demonstrate that the new algorithm capable of estimating larger per-frame motions than the standard registration-based algorithms and that it is more robust in a vision-controlled robotic alignment task.

[1]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[2]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[3]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Éric Marchand,et al.  Accurate real-time tracking using mutual information , 2010, 2010 IEEE International Symposium on Mixed and Augmented Reality.

[6]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[7]  Simon Baker,et al.  Equivalence and efficiency of image alignment algorithms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[8]  Michel Dhome,et al.  Hyperplane Approximation for Template Matching , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Selim Benhimane,et al.  Real-time image-based tracking of planes using efficient second-order minimization , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[10]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[11]  Mark R. Pickering,et al.  Regisration of hyperspectral and trichromatic images via cross cumulative residual entropy maximisation , 2010, 2010 IEEE International Conference on Image Processing.

[12]  Nassir Navab,et al.  A dataset and evaluation methodology for template-based tracking algorithms , 2009, 2009 8th IEEE International Symposium on Mixed and Augmented Reality.

[13]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[14]  Russell H. Taylor,et al.  Visual tracking using the sum of conditional variance , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Gary Bradski,et al.  Computer Vision Face Tracking For Use in a Perceptual User Interface , 1998 .

[16]  Richard I. Hartley,et al.  Optimised KD-trees for fast image descriptor matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.