The preparation of SrSi2O2N2:Eu2+ and Sr2Si5N8:Eu2+ phosphors by a direct silicon nitridation process and Sr(NO3)2 as strontium and oxygen sources

[1]  D. Michalik,et al.  Enhancement of SrSi2O2N2:Eu2+ phosphor by means of oxygen to nitrogen control , 2021 .

[2]  Lang-kai Li,et al.  Improved thermal stability and luminescence properties of SrSi2O2N2:Eu2+ green phosphor by a heterogeneous precipitation protocol for solid-state lighting applications , 2021 .

[3]  Shizhong Wei,et al.  A third route to synthesis of green phosphor SrSi2O2N2: Eu2+ from SrO , 2021 .

[4]  D. Michalik,et al.  Optical properties of SrSi2O2N2:Eu2+ phosphor enhanced by the addition of carbonate or fluoride reactive agents , 2020 .

[5]  Z. Xia,et al.  Recent advances in solid-state LED phosphors with thermally stable luminescence , 2019, Journal of Rare Earths.

[6]  H. Hintzen,et al.  Influence of composition and structure on the thermal quenching of the 5d–4f emission of Eu2+ doped M–Si–N (M = alkali, alkaline earth, rare earth) nitridosilicates , 2019, Journal of Materials Chemistry C.

[7]  Shirun Yan On the origin of temperature dependence of the emission maxima of Eu2+and Ce3+- activated phosphors , 2018 .

[8]  J. Qiu,et al.  Achieving long-term zero-thermal-quenching with the assistance of carriers from deep traps , 2018 .

[9]  Long Yang,et al.  Facile synthesis and systematic study of Eu 2+ doped SrSi 2 O 2 N 2 green-emitting phosphor based on a new method , 2018 .

[10]  Jie Chen,et al.  The competitive mechanisms of nano-SiO2 and reaction temperature on phase transformation and Eu2+ site occupation in Sr2SiO4:Eu2+ phosphor , 2017 .

[11]  D. Michalik,et al.  The influence of Na2CO3 flux on photoluminescence properties of SrSi2O2N2:Eu2+ phosphor , 2017 .

[12]  Yunsheng Hu,et al.  Effect of fluxes on synthesis and luminescence properties of BaSi2O2N2:Eu2+ oxynitride phosphors , 2017 .

[13]  Philippe F. Smet,et al.  White light-emitting diodes: Stabilizing colour and intensity. , 2017, Nature materials.

[14]  Y. Fukuda Editors' Choice—Thermal Quenching Analyses of Eu2+-Activated Sr-Containing Sialon Phosphors Using the Thermally Activated Cross-Over Model , 2017 .

[15]  Z. Xia,et al.  Progress in discovery and structural design of color conversion phosphors for LEDs , 2016 .

[16]  Zihan Xu,et al.  Recent developments in the new inorganic solid-state LED phosphors. , 2016, Dalton transactions.

[17]  R. Xie,et al.  Blue-Emitting Sr3Si8–xAlxO7+xN8–x:Eu2+ Discovered by a Single-Particle-Diagnosis Approach: Crystal Structure, Luminescence, Scale-Up Synthesis, and Its Abnormal Thermal Quenching Behavior , 2015 .

[18]  Jin Wang,et al.  Insights into luminescence quenching and detecting trap distribution in Ba2Si5N8:Eu2+ phosphor with comprehensive considerations of temperature-dependent luminescence behaviors , 2015 .

[19]  Q. Wang,et al.  Recent development in rare earth doped phosphors for white light emitting diodes , 2015 .

[20]  Fan Ren,et al.  A review on light-emitting diode based automotive headlamps , 2015 .

[21]  Yang Jiang,et al.  Formation of the amorphous phase in the carbothermal reduction and nitridation route to SrSi2O2N2 : Eu2+: a new understanding of the catalytic effect of carbon in the synthesis of Sr2Si5N8 : Eu2+ for white LEDs , 2014 .

[22]  Z. Bi,et al.  Synthesis and photoluminescent properties of Sr2Si5N8:Eu2+ red phosphors for white light-emitting diodes , 2014 .

[23]  Xiaojun Wang,et al.  Photoluminescence and thermal stability of Mn2+ co-doped SrSi2O2N2:Eu2+green phosphor synthesized by sol–gel method , 2014 .

[24]  Xin Xu,et al.  Thermal degradation of the green-emitting SrSi2O2N2:Eu2+ phosphor for solid state lighting , 2014 .

[25]  Yingliang Liu,et al.  Temperature-Dependent Luminescence Characteristic of SrSi2O2N2:Eu2+ Phosphor and Its Thermal Quenching Behavior , 2014 .

[26]  Hisao Suzuki,et al.  Fabrication of Eu-doped SrSi2O2N2 phosphor by a solid-state reaction using a new source of Si2N2O powder , 2014 .

[27]  Ying Yu,et al.  Nano-sized Li4Ti5O12 anode material with excellent performance prepared by solid state reaction: The effect of precursor size and morphology , 2013 .

[28]  Yingliang Liu,et al.  Thermoluminescence and Temperature‐Dependent Afterglow Properties in BaSi2O2N2:Eu2+ , 2013 .

[29]  S. Chung,et al.  Combustion Synthesis of Ca2Si5N8: Eu2+ Phosphors and their Luminescent properties , 2013 .

[30]  Yingliang Liu,et al.  Preparation of SrSi2O2N2:Eu2+ Phosphor by SrSi Alloy Precursor and Its Long‐lasting Phosphorescence Properties , 2013 .

[31]  Li Wang,et al.  Kinetic study on the direct nitridation of silicon powders diluted with α-Si3N4 at normal pressure , 2013, International Journal of Minerals, Metallurgy, and Materials.

[32]  Z. Song,et al.  Synthesis, structure and tunable red emissions of Ca(Al/Si)2N2(N1−xOx):Eu2+prepared by alloy-nitridation method , 2013 .

[33]  W. Schnick,et al.  New Polymorph of the Highly Efficient LED-Phosphor SrSi2O2N2:Eu2+ – Polytypism of a Layered Oxonitridosilicate , 2013 .

[34]  R. Xie,et al.  Optical Properties of (Oxy)Nitride Materials: A Review , 2013 .

[35]  Soon-Duk Jee,et al.  A novel synthetic method of Sr2Si5N8:Eu2+ from SrSi2O2N2:Eu2+ by carbo-thermal reduction and nitridation. , 2013, Journal of nanoscience and nanotechnology.

[36]  Chang Liu,et al.  Cost-effective synthesis of Ca-α-sialon:Eu2+ phosphors by a direct silicon nitridation route , 2012 .

[37]  R. Xie,et al.  Highly Reliable White LEDs Using Nitride Phosphors , 2012 .

[38]  E. Xie,et al.  M2Si5N8:Eu2+-based (M = Ca, Sr) red-emitting phosphors fabricated by nitrate reduction process , 2011 .

[39]  Xin Xu,et al.  Reaction Mechanism of SrSi2O2N2:Eu2+ Phosphor Prepared by a Direct Silicon Nitridation Method , 2011 .

[40]  R. Xie,et al.  Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications , 2010, Materials.

[41]  Martin Zeuner,et al.  One-Pot Synthesis of Single-Source Precursors for Nanocrystalline LED Phosphors M2Si5N8:Eu2+ (M = Sr, Ba) , 2009 .

[42]  M. Granger Morgan,et al.  The Transition to Solid-State Lighting , 2009, Proceedings of the IEEE.

[43]  Naoto Hirosaki,et al.  White light-emitting diodes (LEDs) using (oxy)nitride phosphors , 2008 .

[44]  J. H. Seo,et al.  Preparation of Fine-Sized SrSi2O2-δ N2 + 2 / 3δ : Eu2 + Phosphor by Spray Pyrolysis and its Luminescent Characteristics , 2008 .

[45]  Hajime Yamamoto,et al.  Luminescence Properties of ( Sr1 − u Ba u ) Si2O2N2 : Eu2 + , Yellow or Orange Phosphors for White LEDs, Synthesized with ( Sr1 − u Ba u ) 2SiO4 : Eu2 + as a Precursor , 2007 .

[46]  K. Machida,et al.  Preparation of ( Sr1 − x Ca x ) 2Si5N8 ∕ Eu2 + Solid Solutions and Their Luminescence Properties , 2006 .

[47]  P. Schmidta,et al.  Luminescence properties of SrSi 2 O 2 N 2 doped with divalent rare earth ions , 2006 .

[48]  Htjm Bert Hintzen,et al.  Luminescence properties of Eu2+ - activated alkaline-earth silicon-oxynitride MSi2O2-deltaN2+2/3delta (M = Ca, Sr, Ba) : A promising class of novel LED conversion phosphors , 2005 .

[49]  F. Riley Silicon Nitride and Related Materials , 2004 .

[50]  Mamoru Mitomo,et al.  Preparation and Luminescence Spectra of Calcium- and Rare-Earth (R = Eu, Tb, and Pr)-Codoped α-SiAlON Ceramics , 2004 .

[51]  V. Pavarajarn,et al.  Catalytic Effects of Metals on Direct Nitridation of Silicon , 2004 .

[52]  S. Kimura,et al.  Fluidized-bed nitridation of fine silicon powder , 1999 .

[53]  Z. Jovanovic Kinetics of direct nitridation of pelletized silicon grains in a fluidized bed: experiment, mechanism and modelling , 1998 .

[54]  A. Varma,et al.  Intrinsic nitridation kinetics of high-purity silicon powder , 1996 .

[55]  Pei-ling Wang,et al.  Phase relationships in the Sr-Si-O-N system , 1994 .

[56]  M. Barsoum,et al.  Nitridation Kinetics and Thermodynamics of Silicon Powder Compacts , 1991 .

[57]  H. Jennings,et al.  Structure, formation mechanisms and kinetics of reaction-bonded silicon nitride , 1976 .

[58]  G. Blasse Thermal Quenching of Characteristic Fluorescence , 1969 .