Bayesian Hierarchical Curve Registration
暂无分享,去创建一个
[1] R. D. Tuddenham,et al. Physical growth of California boys and girls from birth to eighteen years. , 1954, Publications in child development. University of California, Berkeley.
[2] E. A. Sylvestre,et al. Self Modeling Nonlinear Regression , 1972 .
[3] S. Chiba,et al. Dynamic programming algorithm optimization for spoken word recognition , 1978 .
[4] C. R. Deboor,et al. A practical guide to splines , 1978 .
[5] T. Gasser,et al. Convergence and consistency results for self-modeling nonlinear regression , 1988 .
[6] W. Härdle. Applied Nonparametric Regression , 1991 .
[7] T. Gasser,et al. Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .
[8] W. Härdle. Applied Nonparametric Regression , 1992 .
[9] T. Gasser,et al. Searching for Structure in Curve Samples , 1995 .
[10] Bernard W. Silverman,et al. Incorporating parametric effects into functional principal components analysis , 1995 .
[11] R D Bock,et al. Comparison of height acceleration curves in the Fels, Zurich, and Berkeley growth data. , 1995, Annals of human biology.
[12] Random Time Transformations , 1997 .
[13] T. Gasser,et al. Alignment of curves by dynamic time warping , 1997 .
[14] Michael Ruogu Zhang,et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.
[15] J. Ramsay,et al. Curve registration , 2018, Oxford Handbooks Online.
[16] T. Gasser,et al. Synchronizing sample curves nonparametrically , 1999 .
[17] J. Ramsay,et al. Curve registration by local regression , 2000 .
[18] Michal Linial,et al. Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..
[19] Birgitte B. Rønn,et al. Nonparametric maximum likelihood estimation for shifted curves , 2001 .
[20] B. Silverman,et al. Functional Data Analysis , 1997 .
[21] M. Gerstein,et al. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. , 2001, Journal of molecular biology.
[22] James O. Ramsay,et al. Applied Functional Data Analysis: Methods and Case Studies , 2002 .
[23] Brian J. Smith,et al. BAYESIAN OUTPUT ANALYSIS PROGRAM (BOA) VERSION 1.1 USER'S MANUAL , 2003 .
[24] M. Gerstein,et al. Genomic analysis of gene expression relationships in transcriptional regulatory networks. , 2003, Trends in genetics : TIG.
[25] T. Gasser,et al. Self‐modelling warping functions , 2004 .
[26] Ciprian M. Crainiceanu,et al. Spatially Adaptive Bayesian P-Splines with Heteroscedastic Errors , 2004 .
[27] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[28] Mary J Lindstrom,et al. Self Modeling with Flexible, Random Time Transformations , 2004, Biometrics.
[29] S. Lang,et al. Bayesian P-Splines , 2004 .
[30] H. Müller,et al. Functional Convex Averaging and Synchronization for Time-Warped Random Curves , 2004 .
[31] Lurdes Y T Inoue,et al. Cluster-based network model for time-course gene expression data. , 2007, Biostatistics.
[32] S. E. Ahmed,et al. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.
[33] Olivier Meste,et al. Core Shape modelling of a set of curves , 2010, Comput. Stat. Data Anal..