Meta-optics for spatial optical analog computing

Abstract Rapidly growing demands for high-performance computing, powerful data processing, and big data necessitate the advent of novel optical devices to perform demanding computing processes effectively. Due to its unprecedented growth in the past two decades, the field of meta-optics offers a viable solution for spatially, spectrally, and/or even temporally sculpting amplitude, phase, polarization, and/or dispersion of optical wavefronts. In this review, we discuss state-of-the-art developments, as well as emerging trends, in computational metastructures as disruptive platforms for spatial optical analog computation. Two fundamental approaches based on general concepts of spatial Fourier transformation and Green’s function (GF) are discussed in detail. Moreover, numerical investigations and experimental demonstrations of computational optical surfaces and metastructures for solving a diverse set of mathematical problems (e.g., integrodifferentiation and convolution equations) necessary for on-demand information processing (e.g., edge detection) are reviewed. Finally, we explore the current challenges and the potential resolutions in computational meta-optics followed by our perspective on future research directions and possible developments in this promising area.

[1]  Vladimir M. Shalaev,et al.  Machine learning–assisted global optimization of photonic devices , 2020, Frontiers in Optics and Photonics.

[2]  Jiubin Tan,et al.  Metasurface holographic image projection based on mathematical properties of Fourier transform , 2020 .

[3]  Jiaqi Jiang,et al.  Deep neural networks for the evaluation and design of photonic devices , 2020, Nature Reviews Materials.

[4]  W. T. Chen,et al.  Flat optics with dispersion-engineered metasurfaces , 2020, Nature Reviews Materials.

[5]  A. Polman,et al.  Dual-Polarization Analog 2D Image Processing with Nonlocal Metasurfaces , 2020 .

[6]  Hongqiang Li,et al.  Simulate Deutsch-Jozsa algorithm with metamaterials. , 2020, Optics express.

[7]  U. Celano,et al.  Exciton resonance tuning of an atomically thin lens , 2020 .

[8]  Ali Momeni,et al.  Parallel Optical Computing Based on MIMO Metasurface Processors with Asymmetric Optical Response , 2020, 2004.02948.

[9]  B. Tang,et al.  Promising applications of aggregation-induced emission luminogens in organic optoelectronic devices , 2020, PhotoniX.

[10]  Xiaopeng Zhao,et al.  Quasi-Periodic Dendritic Metasurface for Integral Operation in Visible Light , 2020, Molecules.

[11]  Zhaohui Li,et al.  Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. , 2020, Optics letters.

[12]  Z. Ruan,et al.  Optical Computation of Divergence Operation for Vector Fields , 2020, 2003.10649.

[13]  C. Grigoropoulos,et al.  Fast Reversible Phase Change Silicon for Visible Active Photonics , 2020, Advanced Functional Materials.

[14]  You Zhou,et al.  Flat optics for image differentiation , 2020 .

[15]  A. Adibi,et al.  ITO-Based $\mu$-Heaters for Multi-Stage Switching of Phase-Change Materials: Towards Beyond-Binary Reconfigurable Integrated Photonics , 2020 .

[16]  Lei Zhang,et al.  How Do Space-Time Digital Metasurfaces Serve to Perform Analog Signal Processing? , 2020, 2002.06773.

[17]  A. Khavasi,et al.  Fundamental limit for gain and resolution in analog optical edge detection. , 2020, Optics express.

[18]  A. Adibi,et al.  Tunable nanophotonics enabled by chalcogenide phase-change materials , 2020, 2001.06335.

[19]  W. Cai,et al.  Photocarrier-Induced Active Control of Second-Order Optical Nonlinearity in Monolayer MoS2. , 2020, Small.

[20]  Tian Gu,et al.  A Freeform Dielectric Metasurface Modeling Approach Based on Deep Neural Networks , 2020, ArXiv.

[21]  Laurent Larger,et al.  Three dimensional waveguide-interconnects for scalable integration of photonic neural networks , 2019, Optica.

[22]  Yungui Ma,et al.  Analog Optical Spatial Differentiators Based on Dielectric Metasurfaces , 2019, Advanced Optical Materials.

[23]  Z. Ruan,et al.  Optical phase mining by adjustable spatial differentiator , 2019, Advanced Photonics.

[24]  Hua Cheng,et al.  Metasurface‐Empowered Optical Multiplexing and Multifunction , 2019, Advanced materials.

[25]  M. Memarian,et al.  Wide-Band/Angle Blazed Dual-Mode Metallic Groove Gratings , 2019, IEEE Transactions on Antennas and Propagation.

[26]  Harry A. Atwater,et al.  Electro-Optically Tunable Universal Metasurfaces , 2019, 1910.02069.

[27]  S. Phinn,et al.  Australian vegetated coastal ecosystems as global hotspots for climate change mitigation , 2019, Nature Communications.

[28]  Arka Majumdar,et al.  Controlling three-dimensional optical fields via inverse Mie scattering , 2019, Science Advances.

[29]  Guofan Jin,et al.  When metasurface meets hologram: principle and advances , 2019, Advances in Optics and Photonics.

[30]  Reza Pourabolghasem,et al.  Knowledge Discovery in Nanophotonics Using Geometric Deep Learning , 2019, Adv. Intell. Syst..

[31]  Z. Ruan,et al.  Time response of plasmonic spatial differentiators. , 2019, Optics letters.

[32]  T. Zentgraf,et al.  Metasurface interferometry toward quantum sensors , 2019, Light: Science & Applications.

[33]  Boyuan Liu,et al.  Neuromorphic metasurface , 2019, Photonics Research.

[34]  Tiantian Li,et al.  On-chip wavefront shaping with dielectric metasurface , 2019, Nature Communications.

[35]  Robert W. Boyd,et al.  Nonlinear optical effects in epsilon-near-zero media , 2019, Nature Reviews Materials.

[36]  Francesco Monticone,et al.  Anomalies in light scattering , 2019, Advances in Optics and Photonics.

[37]  I. Staude,et al.  Light-emitting metasurfaces , 2019, Nanophotonics.

[38]  Ali Adibi,et al.  Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach. , 2019, Nanoscale.

[39]  Ali Momeni,et al.  Parallel integro-differential equation solving via multi-channel reciprocal bianisotropic metasurface augmented by normal susceptibilities , 2019, New Journal of Physics.

[40]  Dimos Poulikakos,et al.  Optical Metasurfaces: Evolving from Passive to Adaptive , 2019, Advanced Optical Materials.

[41]  Zhaowei Liu,et al.  Optical edge detection based on high-efficiency dielectric metasurface , 2019, Proceedings of the National Academy of Sciences.

[42]  Weixuan Zhang,et al.  Backscattering-Immune Computing of Spatial Differentiation by Nonreciprocal Plasmonics , 2019, Physical Review Applied.

[43]  Qiming Zhang,et al.  Artificial neural networks enabled by nanophotonics , 2019, Light: Science & Applications.

[44]  Ali Adibi,et al.  Deep Learning Reveals Underlying Physics of Light–Matter Interactions in Nanophotonic Devices , 2019, Advanced Theory and Simulations.

[45]  Romain Fleury,et al.  Topological analog signal processing , 2019, Nature Communications.

[46]  Wenqi Zhu,et al.  Ultrafast optical pulse shaping using dielectric metasurfaces , 2019, Science.

[47]  W. Cai,et al.  All-Optical Control of Light in Micro- and Nanophotonics , 2019, ACS Photonics.

[48]  N. Engheta,et al.  Inverse-designed metastructures that solve equations , 2019, Science.

[49]  Dimitrios Sounas,et al.  High-Index Dielectric Metasurfaces Performing Mathematical Operations , 2019, Nano letters.

[50]  Jonathan A. Fan,et al.  Review of numerical optimization techniques for meta-device design [Invited] , 2019, Optical Materials Express.

[51]  Shuangchun Wen,et al.  Generalized Spatial Differentiation from the Spin Hall Effect of Light and Its Application in Image Processing of Edge Detection , 2019, Physical Review Applied.

[52]  Sergey I. Bozhevolnyi,et al.  Dynamic Metasurfaces Using Phase‐Change Chalcogenides , 2019, Advanced Optical Materials.

[53]  Hua Cheng,et al.  From Single‐Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces , 2019, Advanced materials.

[54]  Ali Adibi,et al.  Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures , 2019, npj Computational Materials.

[55]  Xuewu Xu,et al.  Phase-only transmissive spatial light modulator based on tunable dielectric metasurface , 2019, Science.

[56]  A. Majumdar,et al.  An Optical Frontend for a Convolutional Neural Network , 2018, Applied optics.

[57]  Rupert F. Oulton,et al.  Applications of nanolasers , 2018, Nature Nanotechnology.

[58]  Jason Hickey,et al.  Data-driven metasurface discovery , 2018, ACS nano.

[59]  A. Polman,et al.  Nonlocal Metasurfaces for Optical Signal Processing. , 2018, Physical review letters.

[60]  Lei Ying,et al.  Nanophotonic media for artificial neural inference , 2018, Photonics Research.

[61]  G. Wiederrecht,et al.  Broadband Metamaterial Absorbers , 2018, Advanced Optical Materials.

[62]  Ali Adibi,et al.  Reconfigurable multifunctional metasurfaces employing hybrid phase-change plasmonic architecture , 2018, Nanophotonics.

[63]  S. Fan,et al.  Isotropic wavevector domain image filters by a photonic crystal slab device. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.

[64]  Ann Roberts,et al.  Optical image processing with metasurface dark modes. , 2018, Journal of The Optical Society of America A-optics Image Science and Vision.

[65]  V. Bansal,et al.  Genome-wide association study results for educational attainment aid in identifying genetic heterogeneity of schizophrenia , 2018, Nature Communications.

[66]  W. Cai,et al.  Ultrafast Control of Phase and Polarization of Light Expedited by Hot-Electron Transfer. , 2018, Nano letters.

[67]  Qi Wei,et al.  Acoustic analog computing system based on labyrinthine metasurfaces , 2018, Scientific Reports.

[68]  Robert A Norwood,et al.  Nonlinear optical components for all-optical probabilistic graphical model , 2018, Nature Communications.

[69]  W. Cai,et al.  A Generative Model for Inverse Design of Metamaterials , 2018, Nano letters.

[70]  Z. Kavehvash,et al.  Beam Manipulation by Hybrid Plasmonic-Dielectric Metasurfaces , 2018, Plasmonics.

[71]  Yi Luo,et al.  All-optical machine learning using diffractive deep neural networks , 2018, Science.

[72]  Leonid L Doskolovich,et al.  Spatial integration and differentiation of optical beams in a slab waveguide by a dielectric ridge supporting high-Q resonances. , 2018, Optics express.

[73]  Zabih Ghassemlooy,et al.  Arbitrary Multi-way Parallel Mathematical Operations Based on Planar Discrete Metamaterials , 2018, Plasmonics.

[74]  Yuan Hsing Fu,et al.  Directional lasing in resonant semiconductor nanoantenna arrays , 2018, Nature Nanotechnology.

[75]  H. Atwater,et al.  Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability. , 2018, Nano letters.

[76]  Shanhui Fan,et al.  Photonic crystal slab Laplace operator for image differentiation , 2018 .

[77]  Farzad Zangeneh-Nejad,et al.  Performing mathematical operations using high-index acoustic metamaterials , 2018, New Journal of Physics.

[78]  Payal Verma,et al.  First-order optical spatial differentiator based on a guided-mode resonant grating. , 2018, Optics express.

[79]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[80]  Arka Majumdar,et al.  Metasurface optics for full-color computational imaging , 2018, Science Advances.

[81]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[82]  J. Tiihonen,et al.  Amygdala-orbitofrontal structural and functional connectivity in females with anxiety disorders, with and without a history of conduct disorder , 2018, Scientific Reports.

[83]  Yi Wang,et al.  Implementing Quantum Search Algorithm with Metamaterials , 2017, Advanced materials.

[84]  Shanhui Fan,et al.  A Photonic Crystal Slab Laplace Differentiator , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[85]  A. Khavasi,et al.  Two-Dimensional Edge Detection by Guided Mode Resonant Metasurface , 2017, IEEE Photonics Technology Letters.

[86]  Xiaopeng Zhao,et al.  Performing differential operation with a silver dendritic metasurface at visible wavelengths. , 2017, Optics express.

[87]  David Sell,et al.  Periodic Dielectric Metasurfaces with High‐Efficiency, Multiwavelength Functionalities , 2017 .

[88]  Zongfu Yu,et al.  Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures , 2017, 2019 Conference on Lasers and Electro-Optics (CLEO).

[89]  Babak Rahmani,et al.  Phase Resonance Tuning and Multi-Band Absorption Via Graphene-Covered Compound Metallic Gratings , 2017, IEEE Journal of Quantum Electronics.

[90]  Yuri S. Kivshar,et al.  Fano resonances in photonics , 2017, Nature Photonics.

[91]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[92]  Yisheng Fang,et al.  On-grating graphene surface plasmons enabling spatial differentiation in the terahertz region. , 2017, Optics letters.

[93]  Shanhui Fan,et al.  Plasmonic computing of spatial differentiation , 2017, Nature Communications.

[94]  I. Staude,et al.  Metamaterial-inspired silicon nanophotonics , 2017, Nature Photonics.

[95]  David A. Patterson,et al.  In-datacenter performance analysis of a tensor processing unit , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[96]  Ata Chizari,et al.  Dielectric metasurfaces solve differential and integro-differential equations. , 2017, Optics letters.

[97]  Alexandre Locquet,et al.  Tunable X-Band Optoelectronic Oscillators Based on External-Cavity Semiconductor Lasers , 2017, IEEE Journal of Quantum Electronics.

[98]  Amin Khavasi,et al.  Spatial integration by a dielectric slab and its planar graphene-based counterpart. , 2017, Optics letters.

[99]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[100]  Farzad Zangeneh-Nejad,et al.  Analog optical computing by half-wavelength slabs , 2017, 1701.02630.

[101]  Qi Wei,et al.  Mathematical operations for acoustic signals based on layered labyrinthine metasurfaces , 2017 .

[102]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[103]  Kazuyuki Aihara,et al.  A fully programmable 100-spin coherent Ising machine with all-to-all connections , 2016, Science.

[104]  Peining Li,et al.  Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. , 2016, Nature materials.

[105]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[106]  Demetri Psaltis,et al.  Optical Computing: Past and Future , 2016 .

[107]  Ata Chizari,et al.  Analog optical computing based on a dielectric meta-reflect array. , 2016, Optics letters.

[108]  Farzad Zangeneh-Nejad,et al.  Analog computing by Brewster effect. , 2016, Optics letters.

[109]  Ming Li,et al.  A fully reconfigurable photonic integrated signal processor , 2016, Nature Photonics.

[110]  B. Abbey,et al.  On-chip photonic Fourier transform with surface plasmon polaritons , 2016, Light: Science & Applications.

[111]  Huanyang Chen,et al.  Fano resonances from gradient-index metamaterials , 2016, Scientific Reports.

[112]  Bahram Jalali,et al.  Analog optical computing , 2015, Nature Photonics.

[113]  Shota Kita,et al.  On-chip zero-index metamaterials , 2015, Nature Photonics.

[114]  Z. Kavehvash,et al.  Analog Computing Using Graphene-based Metalines , 2015, Optics letters.

[115]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[116]  Anders Pors,et al.  Analog computing using reflective plasmonic metasurfaces. , 2015, Nano letters.

[117]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[118]  Leonid L Doskolovich,et al.  Optical computation of the Laplace operator using phase-shifted Bragg grating. , 2014, Optics express.

[119]  R. Byer,et al.  Network of time-multiplexed optical parametric oscillators as a coherent Ising machine , 2014, Nature Photonics.

[120]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[121]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[122]  Hossein Mosallaei,et al.  METASURFACE NANOANTENNAS FOR LIGHT PROCESSING , 2013 .

[123]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[124]  K. Goda,et al.  Dispersive Fourier transformation for fast continuous single-shot measurements , 2013, Nature Photonics.

[125]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[126]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[127]  J. P. Woerdman,et al.  Spin Hall effect of light in metallic reflection. , 2011, Optics letters.

[128]  O. Sigmund,et al.  Topology optimization for nano‐photonics , 2011 .

[129]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[130]  D. Miller,et al.  The role of optics in computing , 2010 .

[131]  Rodney S. Tucker,et al.  The role of optics in computing , 2010 .

[132]  Pierre Ambs,et al.  Optical Computing: A 60-Year Adventure , 2010 .

[133]  H. John Caulfield,et al.  Why future supercomputing requires optics , 2010 .

[134]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[135]  Thomas J. Naughton,et al.  Optical computing , 2009, Appl. Math. Comput..

[136]  Y. Kivshar,et al.  Fano resonances in nanoscale structures , 2009, 0902.3014.

[137]  Reza Salem,et al.  Silicon-chip-based ultrafast optical oscilloscope , 2008, Nature.

[138]  J. Azaña,et al.  Photonic temporal integrator for all-optical computing. , 2008, Optics express.

[139]  G. Michael Morris,et al.  Resonant scattering from two-dimensional gratings , 1996 .

[140]  F. Laeri,et al.  Analog Optical Computing , 1987, Other Conferences.

[141]  A.A. Sawchuk,et al.  Digital optical computing , 1984, Proceedings of the IEEE.

[142]  George W. Stroke,et al.  Optical computing , 1972, IEEE Spectrum.

[143]  J. Goodman Introduction to Fourier optics , 1969 .

[144]  Qian Chen,et al.  A Review of Optical Neural Networks , 2020, IEEE Access.

[145]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[146]  Ole Sigmund,et al.  Design of robust and efficient photonic switches using topology optimization , 2012 .

[147]  H. John,et al.  Why future supercomputing requires optics , 2010 .

[148]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .