The Schwarzian-Newton method for solving nonlinear equations, with applications
暂无分享,去创建一个
[1] A. Melman. Classroom Note: Geometry and Convergence of Euler's and Halley's Methods , 1997, SIAM Rev..
[2] Javier Segura. Reliable Computation of the Zeros of Solutions of Second Order Linear ODEs Using a Fourth Order Method , 2010, SIAM J. Numer. Anal..
[3] George H. Brown,et al. On Halley's Variation of Newton's Method , 1977 .
[4] J. Traub. Iterative Methods for the Solution of Equations , 1982 .
[5] Richard B. Paris,et al. Incomplete gamma and related functions , 2010, NIST Handbook of Mathematical Functions.
[6] T. R. Scavo,et al. On the Geometry of Halley's Method , 1995 .
[7] J. M. Gutiérrez,et al. Geometric constructions of iterative functions to solve nonlinear equations , 2003 .
[8] Toshio Fukushima,et al. Numerical inversion of a general incomplete elliptic integral , 2013, J. Comput. Appl. Math..
[9] Amparo Gil,et al. New inequalities from classical Sturm theorems , 2004, J. Approx. Theory.
[10] Nico M. Temme,et al. Efficient algorithms for the inversion of the cumulative central beta distribution , 2016, Numerical Algorithms.
[11] Nico M. Temme,et al. Efficient and Accurate Algorithms for the Computation and Inversion of the Incomplete Gamma Function Ratios , 2012, SIAM J. Sci. Comput..
[12] John P. Boyd,et al. Numerical, perturbative and Chebyshev inversion of the incomplete elliptic integral of the second kind , 2012, Appl. Math. Comput..