Regularity in kinetic formulations via averaging lemmas

We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to use velocity regularity for the solution to the transport equation under consideration. The method of proof is based on a decomposition of the density in Fourier space, combined with the K -method of real interpolation.

[1]  Max Bezard,et al.  Régularité $L\sp p$ précisée des moyennes dans les équations de transport , 1994 .

[2]  Y. Brenier,et al.  A kinetic formulation for multi-branch entropy solutions of scalar conservation laws , 1998 .

[3]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[4]  L. DesvillettesUniversit Averaging Lemmas without Time Fourier Transform and Application to Discretized Kinetic Equations , 1999 .

[5]  A. Vasseur,et al.  Time regularity for the system of isentropic gas dynamics with γ= 3 , 1999 .

[6]  Panagiotis E. Souganidis,et al.  A limiting case for velocity averaging , 1998 .

[7]  심상천 퍼지 Compactness에 관한 고찰 , 1997 .

[8]  Camillo De Lellis,et al.  Line energies for gradient vector fields in the plane , 1999 .

[9]  F. Bouchut,et al.  Averaging lemmas without time Fourier transform and application to discretized kinetic equations , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[11]  Robert V. Kohn,et al.  Magnetic microstructures - a paradigm of multiscale problems , 1999 .

[12]  P. Lions,et al.  Global weak solutions of Vlasov‐Maxwell systems , 1989 .

[13]  Ronald A. DeVore,et al.  The averaging lemma , 2000 .

[14]  C. Cheverry Regularizing effects for multidimensional scalar conservation laws , 2000 .

[15]  J. Lions,et al.  Sur Une Classe D’Espaces D’Interpolation , 1964 .

[16]  Pierre-Louis Lions,et al.  Lp regularity of velocity averages , 1991 .

[17]  Athanasios E. Tzavaras,et al.  KINETIC DECOMPOSITION OF APPROXIMATE SOLUTIONS TO CONSERVATION LAWS: APPLICATION TO RELAXATION AND DIFFUSION-DISPERSION APPROXIMATIONS* , 2002 .

[18]  Michael Westdickenberg,et al.  Some New Velocity Averaging Results , 2002, SIAM J. Math. Anal..

[19]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[20]  Pierre-Louis Lions,et al.  Régularité optimale des moyennes en vitesses, II , 1998 .

[21]  P. Gérard Microlocal defect measures , 1991 .

[22]  Pierre-Louis Lions,et al.  Regularity of the moments of the solution of a Transport Equation , 1988 .

[23]  S. Serfaty,et al.  Compactness, Kinetic Formulation, and Entropies for a Problem Related to Micromagnetics , 2003 .

[24]  Benoît Perthame,et al.  Line-energy Ginzburg-Landau models: zero-energy states , 2002 .

[25]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[26]  P. Jabin,et al.  Compactness in Ginzburg‐Landau energy by kinetic averaging , 2001 .