System reliability analysis through active learning Kriging model with truncated candidate region
暂无分享,去创建一个
Yongshou Liu | Xufeng Yang | Caiying Mi | Chenghu Tang | Xufeng Yang | Chenghu Tang | Caiying Mi | Yong-shou Liu
[1] B. Youn,et al. Complementary Intersection Method for System Reliability Analysis , 2009 .
[2] B. Sudret,et al. Reliability-based design optimization using kriging surrogates and subset simulation , 2011, 1104.3667.
[3] Nicolas Gayton,et al. AK-SYS: An adaptation of the AK-MCS method for system reliability , 2014, Reliab. Eng. Syst. Saf..
[4] Jian Wang,et al. LIF: A new Kriging based learning function and its application to structural reliability analysis , 2017, Reliab. Eng. Syst. Saf..
[5] Chao Hu,et al. A Generalized Complementary Intersection Method (GCIM) for System Reliability Analysis , 2011 .
[6] Yong Yao,et al. Dynamic tunneling algorithm for global optimization , 1989, IEEE Trans. Syst. Man Cybern..
[7] Ling Li,et al. Sequential design of computer experiments for the estimation of a probability of failure , 2010, Statistics and Computing.
[8] R. Rackwitz,et al. First-order concepts in system reliability , 1982 .
[9] J. Ching,et al. Evaluating small failure probabilities of multiple limit states by parallel subset simulation , 2010 .
[10] Sankaran Mahadevan,et al. Adaptive simulation for system reliability analysis of large structures , 2000 .
[11] Hong-shuang Li,et al. A generalized Subset Simulation approach for estimating small failure probabilities of multiple stochastic responses , 2015 .
[12] Xiaoping Du. System reliability analysis with saddlepoint approximation , 2010 .
[13] Zhen Hu,et al. Global sensitivity analysis-enhanced surrogate (GSAS) modeling for reliability analysis , 2016 .
[14] Erik Kjeang,et al. Modification of DIRECT for high-dimensional design problems , 2014 .
[15] Maurice Lemaire,et al. Assessing small failure probabilities by combined subset simulation and Support Vector Machines , 2011 .
[16] M. Eldred,et al. Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions , 2008 .
[17] E. Castillo,et al. Uncertainty analyses in fault trees and Bayesian networks using FORM/SORM methods , 1999 .
[18] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[19] Paolo Gardoni,et al. Matrix-based system reliability method and applications to bridge networks , 2008, Reliab. Eng. Syst. Saf..
[20] O. Ditlevsen. Narrow Reliability Bounds for Structural Systems , 1979 .
[21] Xiaoping Du,et al. A System Reliability Method with Dependent Kriging Predictions , 2016, DAC 2016.
[22] Yi Gao,et al. An active learning kriging model for hybrid reliability analysis with both random and interval variables , 2015 .
[23] George Michailidis,et al. Sequential Experiment Design for Contour Estimation From Complex Computer Codes , 2008, Technometrics.
[24] Carlos Guedes Soares,et al. Adaptive surrogate model with active refinement combining Kriging and a trust region method , 2017, Reliab. Eng. Syst. Saf..
[25] Nicolas Gayton,et al. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .
[26] Pingfeng Wang,et al. An Integrated Performance Measure Approach for System Reliability Analysis , 2015 .
[27] Guillaume Perrin,et al. Active learning surrogate models for the conception of systems with multiple failure modes , 2016, Reliab. Eng. Syst. Saf..
[28] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[29] Manolis Papadrakakis,et al. Accelerated subset simulation with neural networks for reliability analysis , 2012 .
[30] Sankaran Mahadevan,et al. Resilience Assessment Based on Time-Dependent System Reliability Analysis , 2016 .
[31] Sankaran Mahadevan,et al. Efficient surrogate models for reliability analysis of systems with multiple failure modes , 2011, Reliab. Eng. Syst. Saf..