Modeling of switching mechanism in GeSbTe chalcogenide superlattices

[1]  T. Morikawa,et al.  55-µA GexTe1−x/Sb2Te3 superlattice topological-switching random access memory (TRAM) and study of atomic arrangement in Ge-Te and Sb-Te structures , 2014, 2014 IEEE International Electron Devices Meeting.

[2]  Coherent phonon study of (GeTe)l(Sb2Te3)m interfacial phase change memory materials , 2014, 1410.0097.

[3]  S. Murakami,et al.  Mirror-symmetric Magneto-optical Kerr Rotation using Visible Light in [(GeTe)2(Sb2Te3)1]n Topological Superlattices , 2014, Scientific Reports.

[4]  K. Shiraishi,et al.  GeTe sequences in superlattice phase change memories and their electrical characteristics , 2014 .

[5]  M. Tai,et al.  1T-1R pillar-type topological-switching random access memory (TRAM) and data retention of GeTe/Sb2Te3 super-lattice films , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[6]  K. Takeuchi,et al.  Investigation of multi-level-cell and SET operations on super-lattice phase change memories , 2014 .

[7]  A. V. Kolobov,et al.  Ferroelectric Order Control of the Dirac‐Semimetal Phase in GeTe‐Sb2Te3 Superlattices , 2014 .

[8]  Dependence of Switching Characteristics of GeTe/Sb2Te3 Superlattice Phase Change Materials on Electric Pulse Width and Optical Polarization Direction , 2013 .

[9]  K. Shiraishi,et al.  Carrier Injection Induced Switching of Supper-lattice GeTe/Sb2Te3 Phase Change Memories , 2013 .

[10]  Richard Dronskowski,et al.  Mechanisms of Atomic Motion Through Crystalline GeTe , 2013 .

[11]  Norikatsu Takaura,et al.  Superlattice Phase Change Memory Fabrication Process for Back End of Line Devices , 2013 .

[12]  J. Tominaga,et al.  Polarization dependent optical control of atomic arrangement in multilayer Ge-Sb-Te phase change materials , 2012, 1211.5192.

[13]  D. Ielmini,et al.  Phase change materials in non-volatile storage , 2011 .

[14]  P Fons,et al.  Interfacial phase-change memory. , 2011, Nature nanotechnology.

[15]  J. Robertson,et al.  Bonding origin of optical contrast in phase-change memory materials , 2010 .

[16]  J. Tominaga,et al.  What is the Origin of Activation Energy in Phase-Change Film? , 2009 .

[17]  L Perez,et al.  Implementation of a conjugate gradient algorithm for thermal diffusivity identification in a moving boundaries system , 2008 .

[18]  Role of Ge Switch in Phase Transition: Approach using Atomically Controlled GeTe/Sb2Te3 Superlattice , 2008 .

[19]  Crystalline amorphous semiconductor superlattice. , 2008, Physical review letters.

[20]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[21]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[22]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[23]  N. Govind,et al.  A generalized synchronous transit method for transition state location , 2003 .

[24]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[25]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[26]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.