Sharp-interface (or interface) flow models with Dupuit-Forchheimer approximation are widely used to assess, to first order, an aquifer’s vulnerability to seawater intrusion (SWI) and to evaluate sustainable management options for coastal groundwater resources at the screening level. Recognising that interface flow models overestimate SWI, corrections have been proposed to account for the neglected mixing and also for the outflow through a finite gap. These corrections, however, were introduced in the context of specific studies and may not be generally applicable as proposed. The interface model is revisited, placing its corrections in the context of variable-density flow (VDF) theory, by expressing them in terms of the dimensionless parameters governing VDF in schematised (aspect ratio = thickness/length) homogeneous confined coastal aquifers: the coupling parameter (α), a Péclet number (Pe), and the dispersivities ratio (rα). Interfaces are compared to the 50%-salinity lines of VDF numerical solutions and regression equations are developed for estimating the outflow gap and for correcting the length of the interface (terminating with a blunted edge); the dispersion correction, which modifies the interface curvature, is restated with a variable exponent. The corrections for dispersion and for the interface length appear to be the most effective; an outflow gap is important only at small α values (strong advection relative to vertical flow due to density differences). These concepts are applied successfully to calculate the interface position in the lowermost confined sub-unit of the Coastal Plain aquifer of Israel, as an estimate of SWI.RésuméLes modèles d’écoulement à interface abrupt (ou à interface) basés sur l’approximation de Dupuit-Forchheimer sont utilisés largement pour estimer, dans un premier temps, la vulnérabilité des aquifères à l’intrusion d’eau marine (IEM) et évaluer les options de gestion durable pour les ressources en eaux souterraines côtières au niveau des crépines. Reconnaissant que les modèles d’écoulement à interface surestiment l’IEM, des corrections ont été proposées pour prendre en considération le mélange négligé et aussi les sorties d’eau dans un espace fini. Ces corrections, cependant, ont été introduites dans un contexte d’études spécifiques et ne peuvent être applicables généralement comme proposé. Le modèle à interface est. revisité, introduisant les corrections pour un contexte de la théorie de l’écoulement à densité variable (EDF), en les exprimant avec des paramètres sans dimension gouvernant l’EDF pour des aquifères côtiers schématisés (rapport d’aspect = épaisseur/longueur) homogènes captifs: le paramètre de couplage (α), le nombre de Péclet (Pe), et le rapport de dispersivité (rα). Les interfaces sont comparées aux lignes de 50% de salinité des solutions numériques d’EDF et les équations de régression sont développées pour estimer l’espace de sorties d’eau et pour corriger la longueur de l’interface (terminant avec une arête émoussée); la correction de la dispersion, qui modifie la courbure de l’interface, est. reconsidéré avec un exposant variable. Les corrections pour la dispersion et pour la longueur de l’interface apparaissent comme étant les plus efficaces; un espace de sorties d’écoulement est. important seulement pour les petites valeurs α (forte advection relative à l’écoulement vertical due aux différences de densité). Ces concepts sont appliqués avec succès pour calculer la position de l’interface dans la sous-unité captive inférieure de l’aquifère de la plaine côtière d’Israël, une estimation de IEM.ResumenLos modelos de flujo de la interfaz con la aproximación Dupuit-Forchheimer se utilizan ampliamente para evaluar, en primer lugar, la vulnerabilidad del acuífero a la intrusión de agua de mar (SWI) y evaluar opciones de gestión sostenible para los recursos de aguas subterráneas costeras a nivel de prueba. Reconociendo que los modelos de flujo de interfaz sobreestiman SWI, se han propuesto correcciones para explicar la mezcla y también para el flujo de salida a través de un espacio finito. Sin embargo, estas correcciones se introdujeron en el contexto de estudios específicos y no pueden ser generalmente aplicables según lo propuesto. El modelo de interfaz se revisa, colocando sus correcciones en el contexto de la teoría de flujo de densidad variable (VDF), expresándolas en términos de los parámetros adimensionales que gobiernan VDF en acuíferos costeros confinados homogéneos esquematizados (relación de aspecto = espesor/longitud): el parámetro de acoplamiento (α), un número de Péclet (Pe) y la relación de dispersividades (rα). Las interfaces se comparan con las líneas de salinidad al 50% de las soluciones numéricas VDF y las ecuaciones de regresión se desarrollan para estimar el espacio del flujo de salida y para corregir la longitud de la interfaz (que termina con un borde romo); la corrección de la dispersión, que modifica la curvatura de la interfaz, se replantea con un exponente variable. Las correcciones para la dispersión y para la longitud de la interfaz parecen ser las más efectivas; un espacio de salida es importante solo a valores pequeños (fuerte advección relativa al flujo vertical debido a las diferencias de densidad). Estos conceptos se aplican con éxito para calcular la posición de la interfaz en la subunidad confinada más baja del acuífero de llanura costera de Israel, como una estimación de SWI.摘要棉线的分界面(或者说界面)水流模型与Dupuit-Forchheimer近似法广泛用来评价一阶含水层遭受海水入侵的脆弱性以及筛选级别上评估沿海地下水资源可持续管理的选项。认识到界面水流模型会过高估算海水入侵,因此,提出了校正以解释忽略的混合,以及通过有限差距的出流量。然而,这些校正被引入到特定的研究环境中,可能会不象推荐的那样普遍适用。再访界面模型,把校正数据放入可变密度水流理论中,用控制扼要表示的(纵横比 = 厚度/长度)均质承压沿海含水层中可变密度水流的无量纲参数表示:耦合参数(α)、一个Péclet数(Pe)以及分散性比(rα)。界面与可变密度水流数值解的50%-盐度线进行了对比,建立了回归方程,以估算出流量差,并校正界面的长度(用圆滑边缘终结);采用可变的成分重新开始进行修饰界面曲率的分散校正。分散和界面长度的校正似乎最有效;出流量差只有在α值很小时才非常重要(由于密度差,强烈的对流和垂直水流有关)。这些概念成功应用于计算以色列沿海平原含水层最低处的承压亚单元的界面位置,作为海水入侵的估算值。ResumoOs modelos de interface delgada (ou interface), utilizando aproximação de Dupuit-Forchheimer, são amplamente utilizados para avaliar, em primeira ordem, a vulnerabilidade de um aquífero à intrusão de água marinha (IAM) e avaliar opções de manejo sustentável para recursos de águas subterrâneas costeiras no nível de triagem. Reconhecendo que os modelos de fluxo de interface superestimam a IAM, correções foram propostas para analisar a porção negligenciada da mistura e obter o fluxo de saída através de um intervalo finito. Estas correções, no entanto, foram introduzidas no contexto de um estudo de caso e podem não ser aplicados, como aqui proposto, de forma genérica. O modelo de interface é revisto, sendo adicionadas correções no contexto da teoria do fluxo de densidade variável (FDV), expressando-as em termos dos parâmetros adimensionais que governam o FDV em aquíferos costeiros confinados homogêneos (razão de aspecto = comprimento/espessura): o parâmetro acoplado (α), número de Péclet (Pe) e razão de dispersividades (rα). Interfaces são comparadas com as isolinhas de 50% de salinidade das soluções numéricas das equações de FDV e equações de regressão são desenvolvidas para estimar a lacuna de vazão e para corrigir o comprimento da interface (terminando com uma borda grosseira); a correção de dispersão, que modifica a curvatura da interface, é reapresentada com um expoente variável. As correções para dispersão e para comprimento da interface parecem ser as mais efetivas; um intervalo de vazão é importante apenas em valores pequenos de α (forte advecção em relação ao fluxo vertical devido a diferenças de densidade). Estes conceitos são aplicados com sucesso para calcular a posição da interface na subunidade confinada inferior do aquífero da planície costeira de Israel, como uma estimativa da IAM.
[1]
G. Baer,et al.
The Nahal Tavor vent: Interplay of Miocene tectonics, dikes, and volcanism in the Lower Galilee, Israel
,
2006
.
[2]
G. Destouni,et al.
Quantifying a Sustainable Management Space for Human Use of Coastal Groundwater under Multiple Change Pressures
,
2016,
Water Resources Management.
[3]
A. Mantoglou.
Pumping management of coastal aquifers using analytical models of saltwater intrusion
,
2003
.
[4]
Exact versus Dupuit interface flow in anisotropic coastal aquifers
,
2014
.
[5]
H. H. Cooper.
A Hypothesis Concerning the Dynamic Balance of Fresh Water and Salt Water in a Coastal Aquifer
,
1959
.
[6]
Adrian D Werner,et al.
Application of an Analytical Solution as a Screening Tool for Sea Water Intrusion
,
2016,
Ground water.
[7]
B. Abou Zakhem,et al.
Environmental isotope study of seawater intrusion in the coastal aquifer (Syria)
,
2007
.
[8]
Mixing at the interface between two fluids in porous media: a boundary-layer solution
,
2007,
Journal of Fluid Mechanics.
[9]
J. Carrera,et al.
A correction factor to account for mixing in Ghyben‐Herzberg and critical pumping rate approximations of seawater intrusion in coastal aquifers
,
2011
.
[10]
A. Larabi,et al.
Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine)
,
2006
.
[11]
P. Veer.
Analytical solution for steady interface flow in a coastal aquifer involving a phreatic surface with precipitation
,
1977
.
[12]
A. I. Kashef.
Salt‐Water Intrusion in the Nile Delta
,
1983
.
[13]
N. Weisbrod,et al.
Hydraulic Connections Among Subaquifers of the Coastal Plain Aquifer, Israel
,
1994
.
[14]
G. Dagan.
Contribution to discussion of “A density-dependent flow and transport analysis of the effects of groundwater development in a freshwater lens of limited areal extent: the Geneva area (Florida, U.S.A.) case study, by Panday et al. (1993)”
,
1995
.
[15]
Y. Yechieli,et al.
The distribution of saline groundwater and its relation to the hydraulic conditions of aquifers and aquitards: examples from Israel
,
2011
.
[16]
O. Strack.
A single‐potential solution for regional interface problems in coastal aquifers
,
1976
.
[17]
L. H. Motz.
Discussion of “A density-dependent flow and transport analysis of the effects of groundwater development in a freshwater lens of limited areal extent: The Geneva area (Florida, U.S.A.) case study”, by Panday et al. (1993)
,
1995
.
[18]
Olaf Kolditz,et al.
Variable-density flow and transport in porous media: approaches and challenges
,
2002
.
[19]
D. Zeitoun,et al.
A Semi-Empirical Approach to Intrusion Monitoring in Israeli Coastal Aquifer
,
1999
.
[20]
M. Sherif,et al.
Seawater Intrusion Assessment and Mitigation in the Coastal Aquifer of Wadi Ham
,
2013
.
[21]
G. Destouni,et al.
Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: general framework
,
2010
.
[22]
A. S. Goodman,et al.
Analysis of saltwater upconing beneath a pumping well
,
1987
.
[23]
G. Destouni,et al.
Intensively exploited Mediterranean aquifers: resilience to seawater intrusion and proximity to critical thresholds
,
2014
.
[24]
C. Simmons,et al.
Vulnerability Indicators of Sea Water Intrusion
,
2012,
Ground water.
[25]
Chan-Hee Park,et al.
Saltwater Intrusion in Coastal Aquifers
,
2004
.
[26]
G. Destouni,et al.
Tipping points for seawater intrusion in coastal aquifers under rising sea level
,
2013
.
[27]
Seawater intrusion risks and controls for safe use of coastal groundwater under multiple change pressures
,
2014
.
[28]
G. Ferguson,et al.
Vulnerability of coastal aquifers to groundwater use and climate change
,
2012
.
[29]
P. Renard,et al.
Status of the Korba groundwater resources (Tunisia): observations and three-dimensional modelling of seawater intrusion
,
2010
.
[30]
A. Werner,et al.
A national inventory of seawater intrusion vulnerability for Australia
,
2015
.
[31]
M. Goldman,et al.
Are the lower subaquifers of the Mediterranean coastal aquifer of Israel blocked to seawater intrusion? Results of a TDEM (time domain electromagnetic) study †
,
2006
.
[32]
J. B. Robertson,et al.
A density-dependent flow and transport analysis of the effects of groundwater development in a freshwater lens of limited areal extent: The Geneva area (Florida, U.S.A.) case study
,
1993
.
[33]
M. Razack,et al.
Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modeling
,
2008
.
[34]
Adrian D. Werner,et al.
Timescales of seawater intrusion and retreat
,
2013
.
[35]
R. Glover.
The pattern of fresh‐water flow in a coastal aquifer
,
1959
.
[36]
G. Destouni,et al.
Erratum to: Quantifying a Sustainable Management Space for Human Use of Coastal Groundwater under Multiple Change Pressures
,
2016,
Water Resources Management.
[37]
T. Wilbanks,et al.
Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
,
2007
.
[38]
B. Herut,et al.
Numerical Simulation of Submarine Groundwater Flow in the Coastal Aquifer at the Palmahim Area, the Mediterranean Coast of Israel
,
2013,
Water Resources Management.
[39]
W. Sanford,et al.
Current challenges using models to forecast seawater intrusion: lessons from the Eastern Shore of Virginia, USA
,
2010
.
[40]
Jesús Carrera,et al.
Anisotropic dispersive Henry problem
,
2007
.
[41]
Daniel M. Tartakovsky,et al.
Variable-density flow in porous media
,
2006,
Journal of Fluid Mechanics.
[42]
O. Kolditz,et al.
How significant is the slope of the sea-side boundary for modelling seawater intrusion in coastal aquifers?
,
2017
.
[43]
G. Destouni,et al.
Intensive groundwater development in coastal zones and small islands
,
2003
.
[44]
G. Destouni,et al.
Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri basin and aquifer, Cyprus
,
2010
.
[45]
J. Bear.
Dynamics of Fluids in Porous Media
,
1975
.
[46]
Georgia Destouni,et al.
A correction for Dupuit–Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers
,
2015
.
[47]
C. Simmons,et al.
Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration.
,
2016
.
[48]
Saleh Sadeg,et al.
Numerical assessment of seawater intrusion in the Tripoli region, Libya
,
2001
.
[49]
B. Datta,et al.
Review: Simulation-optimization models for the management and monitoring of coastal aquifers
,
2015,
Hydrogeology Journal.
[50]
D. A. Barry,et al.
Seawater intrusion processes, investigation and management: Recent advances and future challenges
,
2013
.
[51]
P. Polubarinova-Kochina,et al.
Theory of ground water movement
,
1962
.
[52]
G. Dagan,et al.
Mixing at the interface between two fluids in aquifer well upconing steady flow
,
2008
.
[53]
A. S. Goodman,et al.
Quantitative analysis of saltwater-freshwater relationships in groundwater systems—A historical perspective
,
1985
.
[54]
M. Bakker.
A Dupuit formulation for modeling seawater intrusion in regional aquifer systems
,
2003
.