In Vivo Dendritic Cell Tracking Using Fluorescence Lifetime Imaging and Near-Infrared-Emissive Polymersomes

[1]  Shingo Baba,et al.  How Reproducible Is Bioluminescent Imaging of Tumor Cell Growth? Single Time Point versus the Dynamic Measurement Approach , 2007, Molecular imaging.

[2]  E. Brunette,et al.  In Vivo Time Domain Optical Imaging of Renal Ischemia-Reperfusion Injury: Discrimination Based on Fluorescence Lifetime , 2007, Molecular imaging.

[3]  V. Chernomordik,et al.  Fluorescence Lifetime Imaging System for in Vivo Studies , 2007, Molecular imaging.

[4]  B. Gjertsen,et al.  In Vivo Optical Imaging of Acute Myeloid Leukemia by Green Fluorescent Protein: Time-Domain Autofluorescence Decoupling, Fluorophore Quantification, and Localization , 2007, Molecular imaging.

[5]  E. Gilboa DC-based cancer vaccines. , 2007, The Journal of clinical investigation.

[6]  Guizhi Li,et al.  Tat-functionalized near-infrared emissive polymersomes for dendritic cell labeling. , 2007, Bioconjugate chemistry.

[7]  D. Hammer,et al.  Quantitative membrane loading of polymer vesicles. , 2006, Soft matter.

[8]  G. Lucignani,et al.  Molecular imaging of cell-mediated cancer immunotherapy. , 2006, Trends in biotechnology.

[9]  C. Contag,et al.  Luciferin derivatives for enhanced in vitro and in vivo bioluminescence assays. , 2006, Biochemistry.

[10]  J. Villadangos,et al.  Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. , 2006, Immunity.

[11]  Lin Zhang,et al.  Preparation of apoptotic tumor cells with replication-incompetent HSV augments the efficacy of dendritic cell vaccines , 2006, Cancer Gene Therapy.

[12]  Arend Heerschap,et al.  Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy , 2005, Nature Biotechnology.

[13]  Eric T Ahrens,et al.  In vivo imaging platform for tracking immunotherapeutic cells , 2005, Nature Biotechnology.

[14]  C. Contag,et al.  Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. , 2005, Journal of biomedical optics.

[15]  Michael J Welch,et al.  Positron-emitting isotopes produced on biomedical cyclotrons. , 2005, Current medicinal chemistry.

[16]  Britton Chance,et al.  Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  David K Welsh,et al.  Bioluminescence imaging in living organisms. , 2005, Current opinion in biotechnology.

[18]  B. Rice,et al.  Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. , 2004, Molecular imaging.

[19]  George McNamara,et al.  Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. , 2003, Blood.

[20]  S. Gambhir,et al.  Molecular imaging in living subjects: seeing fundamental biological processes in a new light. , 2003, Genes & development.

[21]  N. Yang,et al.  Animal Model Generation of a Syngeneic Mouse Model to Study the Effects of Vascular Endothelial Growth Factor in Ovarian Carcinoma , 2002 .

[22]  K. Remes Cell therapy , 2002, Journal of the Neurological Sciences.

[23]  C. Contag,et al.  Bioluminescence imaging of lymphocyte trafficking in vivo. , 2001, Experimental hematology.

[24]  Yukio Yamada Fundamental Studies of Photon Migration in Biological Tissues and Their Application to Optical Tomography , 2000 .

[25]  Simon,et al.  Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection , 1999, Immunology.

[26]  D. Ladd,et al.  Reagents for the preparation of chromophorically labeled polyethylene glycol-protein conjugates. , 1993, Analytical Biochemistry.

[27]  J. Kennedy,et al.  The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin. , 1988, Journal of photochemistry and photobiology. B, Biology.