Learning Discriminative Data Fitting Functions for Blind Image Deblurring

Solving blind image deblurring usually requires defining a data fitting function and image priors. While existing algorithms mainly focus on developing image priors for blur kernel estimation and non-blind deconvolution, only a few methods consider the effect of data fitting functions. In contrast to the state-of-the-art methods that use a single or a fixed data fitting term, we propose a data-driven approach to learn effective data fitting functions from a large set of motion blurred images with the associated ground truth blur kernels. The learned data fitting function facilitates estimating accurate blur kernels for generic scenes and domain-specific problems with corresponding image priors. In addition, we extend the learning approach for data fitting function to latent image restoration and nonuniform deblurring. Extensive experiments on challenging motion blurred images demonstrate the proposed algorithm performs favorably against the state-of-the-art methods.

[1]  Wei Xiong,et al.  Rotational Motion Deblurring of a Rigid Object from a Single Image , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[2]  Yair Weiss,et al.  From learning models of natural image patches to whole image restoration , 2011, 2011 International Conference on Computer Vision.

[3]  Narendra Ahuja,et al.  A Comparative Study for Single Image Blind Deblurring , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Sebastian Nowozin,et al.  Discriminative Non-blind Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Ming-Hsuan Yang,et al.  Deblurring Text Images via L0-Regularized Intensity and Gradient Prior , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  XuYi,et al.  Image smoothing via L0 gradient minimization , 2011 .

[7]  Wolfgang Heidrich,et al.  Learning High-Order Filters for Efficient Blind Deconvolution of Document Photographs , 2016, ECCV.

[8]  Sunghyun Cho,et al.  Good Image Priors for Non-blind Deconvolution - Generic vs. Specific , 2014, ECCV.

[9]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, CVPR.

[11]  Dani Lischinski,et al.  Deblurring by Example Using Dense Correspondence , 2013, 2013 IEEE International Conference on Computer Vision.

[12]  Ming-Hsuan Yang,et al.  Deblurring Face Images with Exemplars , 2014, ECCV.

[13]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[14]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[15]  Ankit Gupta,et al.  Single Image Deblurring Using Motion Density Functions , 2010, ECCV.

[16]  Ming-Hsuan Yang,et al.  $L_0$ -Regularized Intensity and Gradient Prior for Deblurring Text Images and Beyond , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Lei Zhang,et al.  Discriminative learning of iteration-wise priors for blind deconvolution , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Meng Wang,et al.  Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Sunghyun Cho,et al.  Edge-based blur kernel estimation using patch priors , 2013, IEEE International Conference on Computational Photography (ICCP).

[21]  Cong Phuoc Huynh,et al.  Class-Specific Image Deblurring , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[22]  Ming-Hsuan Yang,et al.  Fast Non-uniform Deblurring using Constrained Camera Pose Subspace , 2012, BMVC.

[23]  Bernhard Schölkopf,et al.  Fast removal of non-uniform camera shake , 2011, 2011 International Conference on Computer Vision.

[24]  Zhixun Su,et al.  Fast $\ell ^{0}$-Regularized Kernel Estimation for Robust Motion Deblurring , 2013, IEEE Signal Processing Letters.

[25]  Ming-Hsuan Yang,et al.  Good Regions to Deblur , 2012, ECCV.

[26]  Michael S. Brown,et al.  Richardson-Lucy deblurring for scenes under a projective motion path , 2014, Motion Deblurring.

[27]  Cewu Lu,et al.  Image smoothing via L0 gradient minimization , 2011, ACM Trans. Graph..

[28]  Jiaya Jia,et al.  Mathematical models and practical solvers for uniform motion deblurring , 2014, Motion Deblurring.

[29]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[30]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[31]  Michal Irani,et al.  Blind Deblurring Using Internal Patch Recurrence , 2014, ECCV.

[32]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[33]  Jean Ponce,et al.  Non-uniform Deblurring for Shaken Images , 2012, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[35]  Sunghyun Cho,et al.  Fast motion deblurring , 2009, SIGGRAPH 2009.

[36]  Sylvain Paris,et al.  Handling Noise in Single Image Deblurring Using Directional Filters , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Deqing Sun,et al.  Blind Image Deblurring Using Dark Channel Prior , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Bernhard Schölkopf,et al.  Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database , 2012, ECCV.

[39]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.