Mechanism of gating and ion conductivity of a possible tetrameric pore in aquaporin-1.

[1]  D. Bok,et al.  Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions , 1982, The Journal of cell biology.

[2]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[3]  P. Agre,et al.  Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[5]  Peter Agre,et al.  Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CHIP28 Protein , 1992, Science.

[6]  Y. Jan,et al.  Structural elements involved in specific K+ channel functions. , 1992, Annual review of physiology.

[7]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[8]  P. Agre,et al.  Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. , 1994, Biochemistry.

[9]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[10]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[11]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[12]  P. Agre,et al.  Pathophysiology of the aquaporin water channels. , 1996, Annual review of physiology.

[13]  J. Regan,et al.  Forskolin Stimulation of Water and Cation Permeability in Aquaporin1 Water Channels , 1996, Science.

[14]  B. Wallace,et al.  HOLE: a program for the analysis of the pore dimensions of ion channel structural models. , 1996, Journal of molecular graphics.

[15]  J. Moss,et al.  Molecular Characterization of the GTPase-activating Domain of ADP-ribosylation Factor Domain Protein 1 (ARD1)* , 1998, The Journal of Biological Chemistry.

[16]  P. Agre,et al.  Progress on the structure and function of aquaporin 1. , 1998, Journal of structural biology.

[17]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[18]  Mario J. Borgnia,et al.  The Aquaporins, Blueprints for Cellular Plumbing Systems* , 1998, The Journal of Biological Chemistry.

[19]  S. Siegelbaum,et al.  A State-independent Interaction between Ligand and a Conserved Arginine Residue in Cyclic Nucleotide-gated Channels Reveals a Functional Polarity of the Cyclic Nucleotide Binding Site* , 1998, The Journal of Biological Chemistry.

[20]  M. Yasui,et al.  Rapid gating and anion permeability of an intracellular aquaporin , 1999, Nature.

[21]  M. Borgnia,et al.  Cellular and molecular biology of the aquaporin water channels. , 1999, Annual review of biochemistry.

[22]  Andreas Engel,et al.  Aquaporins: Phylogeny, Structure, and Physiology of Water Channels. , 1999, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[23]  J. Regan,et al.  Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. , 2000, Molecular pharmacology.

[24]  Andreas Engel,et al.  Structural determinants of water permeation through aquaporin-1 , 2000, Nature.

[25]  D. Fu,et al.  Structure of a glycerol-conducting channel and the basis for its selectivity. , 2000, Science.

[26]  K. Schulten,et al.  Steered molecular dynamics and mechanical functions of proteins. , 2001, Current opinion in structural biology.

[27]  P. Pohl,et al.  Water and Ion Permeation of Aquaporin-1 in Planar Lipid Bilayers , 2001, The Journal of Biological Chemistry.

[28]  Bong-Gyoon Han,et al.  Structural basis of water-specific transport through the AQP1 water channel , 2001, Nature.

[29]  T. Pannabecker,et al.  Tetraethylammonium block of water flux in Aquaporin-1 channels expressed in kidney thin limbs of Henle's loop and a kidney-derived cell line. , 2002, BMC Physiology.

[30]  B. L. de Groot,et al.  A refined structure of human aquaporin‐1 , 2001, FEBS letters.

[31]  M. Borgnia,et al.  Highly selective water channel activity measured by voltage clamp: Analysis of planar lipid bilayers reconstituted with purified AqpZ , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Klingenberg,et al.  Role of intrahelical arginine residues in functional properties of uncoupling protein (UCP1). , 2001, Biochemistry.

[33]  K. Schulten,et al.  Molecular dynamics study of aquaporin‐1 water channel in a lipid bilayer , 2001, FEBS letters.

[34]  K. Schulten,et al.  The mechanism of glycerol conduction in aquaglyceroporins. , 2001, Structure.

[35]  Ronald M. Welch,et al.  Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests , 2001, Science.

[36]  Andrea J Yool,et al.  New roles for old holes: ion channel function in aquaporin-1. , 2002, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[37]  D. Boassa,et al.  A fascinating tail: cGMP activation of aquaporin-1 ion channels. , 2002, Trends in pharmacological sciences.

[38]  R. Cerione,et al.  Understanding the catalytic mechanism of GTPase-activating proteins: demonstration of the importance of switch domain stabilization in the stimulation of GTP hydrolysis. , 2002, Biochemistry.

[39]  Intermittent permeation of cylindrical nanopores by water. , 2002, Physical review letters.

[40]  K. Schulten,et al.  Energetics of glycerol conduction through aquaglyceroporin GlpF , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  K. Schulten,et al.  Control of the Selectivity of the Aquaporin Water Channel Family by Global Orientational Tuning , 2002, Science.

[42]  A. Yool,et al.  Regulated Cationic Channel Function in XenopusOocytes Expressing Drosophila Big Brain , 2002, The Journal of Neuroscience.

[43]  M. Yasui,et al.  Aquaporin Water Channels , 2004 .

[44]  Robert M Stroud,et al.  Architecture and Selectivity in Aquaporins: 2.5 Å X-Ray Structure of Aquaporin Z , 2003, PLoS biology.

[45]  Rich Olson,et al.  Structural basis for modulation and agonist specificity of HCN pacemaker channels , 2003, Nature.

[46]  D. Boassa,et al.  Single amino acids in the carboxyl terminal domain of aquaporin-1 contribute to cGMP-dependent ion channel activation , 2003, BMC Physiology.

[47]  K. Schulten,et al.  Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics. , 2003, Biophysical journal.

[48]  K. Schulten,et al.  Electrostatic tuning of permeation and selectivity in aquaporin water channels. , 2003, Biophysical journal.

[49]  Oliver Beckstein,et al.  Liquid–vapor oscillations of water in hydrophobic nanopores , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  B. L. de Groot,et al.  The mechanism of proton exclusion in the aquaporin-1 water channel. , 2003, Journal of molecular biology.

[51]  Kaihsu Tai,et al.  Not ions alone: barriers to ion permeation in nanopores and channels. , 2004, Journal of the American Chemical Society.

[52]  Block by extracellular divalent cations of Drosophila big brain channels expressed in Xenopus oocytes. , 2004, Biophysical journal.

[53]  Oliver Beckstein,et al.  The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores , 2004, Physical biology.

[54]  E. Tajkhorshid,et al.  Molecular basis of proton blockage in aquaporins. , 2004, Structure.

[55]  K. Schulten,et al.  Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. , 2004, Biophysical journal.

[56]  W. Stamer,et al.  Novel roles for aquaporins as gated ion channels , 2004 .

[57]  K. Schulten,et al.  The mechanism of proton exclusion in aquaporin channels , 2004, Proteins.

[58]  K. Schulten,et al.  Theory and simulation of water permeation in aquaporin-1. , 2004, Biophysical journal.

[59]  Robert M Stroud,et al.  The channel architecture of aquaporin 0 at a 2.2-A resolution. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Tamir Gonen,et al.  Aquaporin-0 membrane junctions reveal the structure of a closed water pore , 2004, Nature.

[61]  P. Pohl,et al.  Aquaporin-1, Nothing but a Water Channel* , 2004, Journal of Biological Chemistry.

[62]  B. Jena,et al.  Regulation of the water channel aquaporin‐1: isolation and reconstitution of the regulatory complex , 2004, Cell biology international.

[63]  Peter Agre,et al.  Aquaporin water channels (Nobel Lecture). , 2004, Angewandte Chemie.

[64]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[65]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[66]  K. Schulten,et al.  What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF. , 2005, Structure.

[67]  P. Pohl,et al.  Proton exclusion by an aquaglyceroprotein: a voltage clamp study , 2005, Biology of the cell.

[68]  Peter Agre,et al.  Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 A. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Yasui,et al.  Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005 .

[71]  Yi Wang,et al.  Structural mechanism of plant aquaporin gating , 2006, Nature.

[72]  W. Stamer,et al.  Ion Channel Function of Aquaporin-1 Natively Expressed in Choroid Plexus , 2006, The Journal of Neuroscience.